facebook-bart-base / generate_answer.py
vakodiya's picture
Update generate_answer.py
01a0479 verified
raw
history blame
834 Bytes
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from langchain.prompts import PromptTemplate
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
def generate_answer(context):
prompt_template = PromptTemplate(template="Summarise the following context: {context}",
input_variables=["context"], output_variables=["answer"])
# Model loading
format_prompt = prompt_template.format(context=context)
encoded_input = tokenizer(format_prompt, return_tensors='pt')
# Run the model
output = model.generate(**encoded_input) # Use generate method for text generation
# Decode the model output to text
decoded_output = tokenizer.decode(output[0])
return decoded_output