Spaces:
Paused
Paused
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from langchain.prompts import PromptTemplate | |
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") | |
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") | |
def generate_answer(context): | |
prompt_template = PromptTemplate(template="Summarise the following context: {context}", | |
input_variables=["context"], output_variables=["answer"]) | |
# Model loading | |
format_prompt = prompt_template.format(context=context) | |
encoded_input = tokenizer(format_prompt, return_tensors='pt') | |
# Run the model | |
output = model.generate(**encoded_input) # Use generate method for text generation | |
# Decode the model output to text | |
decoded_output = tokenizer.decode(output[0]) | |
return decoded_output |