from transformers import BartTokenizer, BartModel from langchain.prompts import PromptTemplate tokenizer = BartTokenizer.from_pretrained('facebook/bart-base') model = BartModel.from_pretrained('facebook/bart-base') def generate_answer(context): prompt_template = PromptTemplate(template="Summarise the following context: {context}", input_variables=["context"], output_variables=["answer"]) # Model loading format_prompt = prompt_template.format(context=context) encoded_input = tokenizer(format_prompt, return_tensors='pt') # Run the model output = model.generate(**encoded_input) # Use generate method for text generation # Decode the model output to text decoded_output = tokenizer.decode(output[0]) return decoded_output