Spaces:
Paused
Paused
Audio question and audio response
Browse files- SDLC.wav +0 -0
- app.py +18 -17
- audio_to_text.py +23 -0
- generate_answer.py +19 -0
- requirements.txt +4 -1
- text_to_audio.py +22 -0
SDLC.wav
ADDED
Binary file (203 kB). View file
|
|
app.py
CHANGED
@@ -1,26 +1,27 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
from
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
|
8 |
st.title("GPT 2 Chat Bot?")
|
9 |
-
input_text = st.text_area("Enter text to classify:")
|
10 |
-
|
11 |
|
|
|
12 |
if st.button("""Enter >>>>> """):
|
13 |
if input_text:
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
+
from generate_answer import generate_answer
|
4 |
+
from audio_to_text import audio_to_text
|
5 |
+
from text_to_audio import text_to_audio
|
6 |
|
7 |
+
file_path_relative = 'SDLC.wav'
|
8 |
+
file_path_abs = os.path.abspath(file_path_relative)
|
9 |
|
10 |
st.title("GPT 2 Chat Bot?")
|
|
|
|
|
11 |
|
12 |
+
input_text = st.text_area("Search query:")
|
13 |
if st.button("""Enter >>>>> """):
|
14 |
if input_text:
|
15 |
+
response_text = generate_answer(input_text)
|
16 |
+
st.write(response_text)
|
17 |
+
|
18 |
+
st.audio(data=file_path_abs, format='audio/wav')
|
19 |
+
if st.button("""Use Audio question """):
|
20 |
+
audio_text = audio_to_text(file_path_abs)
|
21 |
+
answer = generate_answer(audio_text)
|
22 |
+
audio_bytes = text_to_audio(answer)
|
23 |
+
st.audio(audio_bytes, format="audio/wav")
|
24 |
+
st.write(answer)
|
25 |
+
|
26 |
|
27 |
|
audio_to_text.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
2 |
+
import torchaudio
|
3 |
+
|
4 |
+
|
5 |
+
# load model and processor
|
6 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
7 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
8 |
+
model.config.forced_decoder_ids = None
|
9 |
+
|
10 |
+
|
11 |
+
def audio_to_text(file_path_abs):
|
12 |
+
# Load the audio and resample it
|
13 |
+
waveform, sample_rate = torchaudio.load(file_path_abs)
|
14 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
15 |
+
waveform = resampler(waveform)
|
16 |
+
waveform = waveform.squeeze().numpy()
|
17 |
+
input_features = processor(waveform, sampling_rate=16000, return_tensors="pt").input_features
|
18 |
+
|
19 |
+
# generate token ids
|
20 |
+
predicted_ids = model.generate(input_features)
|
21 |
+
# decode token ids to text
|
22 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
23 |
+
return transcription
|
generate_answer.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
2 |
+
from langchain.prompts import PromptTemplate
|
3 |
+
|
4 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
5 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
6 |
+
|
7 |
+
|
8 |
+
def generate_answer(question):
|
9 |
+
prompt_template = PromptTemplate(template="Answer the following question within 100 words: {question}",
|
10 |
+
input_variables=["question"], output_variables=["answer"])
|
11 |
+
# Model loading
|
12 |
+
format_prompt = prompt_template.format(question=question)
|
13 |
+
encoded_input = tokenizer(format_prompt, return_tensors='pt')
|
14 |
+
# Run the model
|
15 |
+
output = model.generate(**encoded_input, max_length=100) # Use generate method for text generation
|
16 |
+
# Decode the model output to text
|
17 |
+
decoded_output = tokenizer.decode(output[0])
|
18 |
+
response_text = decoded_output
|
19 |
+
return response_text
|
requirements.txt
CHANGED
@@ -4,4 +4,7 @@ langchain-community==0.2.5
|
|
4 |
python-multipart==0.0.9
|
5 |
transformers==4.41.2
|
6 |
torch==2.3.1
|
7 |
-
tensorflow==2.16.2
|
|
|
|
|
|
|
|
4 |
python-multipart==0.0.9
|
5 |
transformers==4.41.2
|
6 |
torch==2.3.1
|
7 |
+
tensorflow==2.16.2
|
8 |
+
sentencepiece
|
9 |
+
soundfile
|
10 |
+
datasets
|
text_to_audio.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from datasets import load_dataset
|
3 |
+
import soundfile as sf
|
4 |
+
import torch
|
5 |
+
|
6 |
+
synthesiser = pipeline("text-to-speech", "microsoft/speecht5_tts")
|
7 |
+
|
8 |
+
|
9 |
+
def text_to_audio(text):
|
10 |
+
# clean the response and max_size is 600
|
11 |
+
text_clean = text.replace('\n', '').replace('*', '')
|
12 |
+
text_550 = text_clean[:590]
|
13 |
+
# get speaker embeddings
|
14 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
15 |
+
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
16 |
+
# You can replace this embedding with your own as well.
|
17 |
+
|
18 |
+
speech = synthesiser(text_550, forward_params={"speaker_embeddings": speaker_embedding})
|
19 |
+
sf.write("output.wav", speech["audio"], samplerate=speech["sampling_rate"])
|
20 |
+
audio_file = open("output.wav", "rb")
|
21 |
+
audio_bytes = audio_file.read()
|
22 |
+
return audio_bytes
|