File size: 5,276 Bytes
b6a4e8d
0af2865
 
 
 
897ce6f
0af2865
 
 
 
2346d6a
0af2865
42c983e
 
b6a4e8d
c0f28c9
4b442ac
0af2865
29f1884
 
4b442ac
2346d6a
e201b51
4b442ac
0af2865
 
 
 
 
 
4b442ac
0af2865
 
 
 
897ce6f
4a0d0a3
 
897ce6f
4b442ac
0af2865
4b442ac
0af2865
 
 
 
c151fbf
d12a417
 
4a0d0a3
0af2865
4b442ac
0af2865
 
 
e201b51
4a0d0a3
b6a4e8d
 
 
 
 
 
 
 
2346d6a
21b2429
b6a4e8d
2346d6a
11f85bd
37717fd
4b442ac
4a0d0a3
 
 
 
897ce6f
 
 
8e54579
21b2429
4b442ac
 
c9cf861
0af2865
 
 
89b285a
 
 
 
0af2865
4b442ac
0af2865
 
21b2429
c9cf861
b9e42d9
 
0af2865
5b978bc
c9cf861
 
5b978bc
11ce526
b9e42d9
11ce526
acd9548
 
8b4f654
b9e42d9
 
c9cf861
b9e42d9
4b442ac
897ce6f
e9813d0
897ce6f
e9813d0
 
 
0af2865
e9813d0
 
 
 
0af2865
e9813d0
4a0d0a3
897ce6f
e9813d0
 
0af2865
e9813d0
 
 
 
 
 
 
 
0af2865
e9813d0
 
0af2865
e9813d0
 
0af2865
e9813d0
c9cf861
4b442ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models.gigachat import GigaChat 
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub, LlamaCpp
from huggingface_hub import snapshot_download, hf_hub_download


# from prompts import CONDENSE_QUESTION_PROMPT

repo_name = "IlyaGusev/saiga_mistral_7b_gguf"
model_name = "model-q4_K.gguf"

#snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)


def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()

    return text


def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(separator="\n",
                                          chunk_size=1000,  # 1000
                                          chunk_overlap=200,  # 200
                                          length_function=len
                                          )
    chunks = text_splitter.split_text(text)

    return chunks


def get_vectorstore(text_chunks):
    #embeddings = OpenAIEmbeddings()
    #embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
    embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
    #embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)

    return vectorstore


def get_conversation_chain(vectorstore, model_name):
    
    # llm = LlamaCpp(model_path=model_name,
    #                temperature=0.1,
    #                top_k=30,
    #                top_p=0.9,
    #                streaming=True,
    #                n_ctx=2048,
    #                n_parts=1,
    #                echo=True
    #               )

    # llm = ChatOpenAI()

    llm = GigaChat(credentials=os.getenv("GIGACHAT_CREDENTIALS"),
                   verify_ssl_certs=False)
    
    memory = ConversationBufferMemory(memory_key='chat_history',
                                      input_key='question',
                                      output_key='answer',
                                      return_messages=True)
    
    conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm,
                                                               retriever=vectorstore.as_retriever(),
                                                               memory=memory,
                                                               return_source_documents=True
                                                               )

    return conversation_chain


def handle_userinput(user_question):

    if user_question == None:
        user_question = "привет"
        
    response = st.session_state.conversation({'question': user_question})

    st.session_state.chat_history = response['chat_history']

    st.session_state.retrieved_text = response['source_documents']

    for i, (message, text) in enumerate(zip(st.session_state.chat_history, st.session_state.retrieved_text)):
        if i % 3 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
            print(text)
            st.write(bot_template.replace(
                "{{MSG}}", str(text.page_content)), unsafe_allow_html=True)

            
            
    #for text in enumerate(st.session_state.retrieved_text):
    #    st.write(text[1].page_content, '\n')

    #print(response['source_documents'][0])

# main code
load_dotenv()

st.set_page_config(page_title="Chat with multiple PDFs",
                   page_icon=":books:")
st.write(css, unsafe_allow_html=True)

if "conversation" not in st.session_state:
    st.session_state.conversation = None
if "chat_history" not in st.session_state:
    st.session_state.chat_history = None

st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents: ")

if user_question:
    handle_userinput(user_question)

with st.sidebar:
    st.subheader("Your documents")
    pdf_docs = st.file_uploader(
        "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
    if st.button("Process"):
        with st.spinner("Processing"):
            # get pdf text
            raw_text = get_pdf_text(pdf_docs)

            # get the text chunks
            text_chunks = get_text_chunks(raw_text)

            # create vector store
            vectorstore = get_vectorstore(text_chunks)

            # create conversation chain
            st.session_state.conversation = get_conversation_chain(vectorstore, model_name)