Spaces:
Running
Running
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from htmlTemplates import css, bot_template, user_template | |
from langchain.llms import HuggingFaceHub, LlamaCpp | |
from huggingface_hub import snapshot_download, hf_hub_download | |
# from prompts import CONDENSE_QUESTION_PROMPT | |
repo_name = "IlyaGusev/saiga2_7b_gguf" | |
model_name = "model-q2_K.gguf" | |
#snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name) | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter(separator="\n", | |
chunk_size=500, # 1000 | |
chunk_overlap=30, # 200 | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
#embeddings = OpenAIEmbeddings() | |
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2") | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore, model_name): | |
llm = LlamaCpp(model_path=model_name, | |
temperature=0.1, | |
top_k=30, | |
top_p=0.9, | |
streaming=True, | |
n_ctx=2048, | |
n_parts=1, | |
echo=True | |
) | |
#llm = ChatOpenAI() | |
memory = ConversationBufferMemory(memory_key='chat_history', input_key='question', output_key='answer', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, | |
# condense_question_prompt=CONDENSE_QUESTION_PROMPT, | |
retriever=vectorstore.as_retriever(), | |
memory=memory, | |
return_source_documents=True | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
st.session_state.retrieved_text = response['source_documents'] | |
for n in enumerate(st.session_state.retrieved_text): | |
st.write(response['source_documents'][n]) | |
print(response['source_documents'][0]) | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
#st.write(bot_template.replace( | |
# "{{MSG}}", str(text[0])), unsafe_allow_html=True) | |
# main code | |
load_dotenv() | |
st.set_page_config(page_title="Chat with multiple PDFs", | |
page_icon=":books:") | |
st.write(css, unsafe_allow_html=True) | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Chat with multiple PDFs :books:") | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader( | |
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
# get pdf text | |
raw_text = get_pdf_text(pdf_docs) | |
# get the text chunks | |
text_chunks = get_text_chunks(raw_text) | |
# create vector store | |
vectorstore = get_vectorstore(text_chunks) | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain(vectorstore, model_name) | |