Spaces:
Build error
Build error
File size: 1,369 Bytes
4dad73d 0b5b5f4 4dad73d db64e00 4dad73d f89e9f5 4dad73d db64e00 ccf8d4b 4dad73d bdde448 4dad73d ccf8d4b 4dad73d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
#importing the necessary libraries
import pandas as pd
import numpy as np
import gradio as gr
from sentence_transformers import SentenceTransformer
from keybert import KeyBERT
from keyphrase_vectorizers import KeyphraseCountVectorizer
# Defining a function to read in the text file
def read_in_text(url):
with open(url, 'r') as file:
article = file.read()
return article
#tmp_model = SentenceTransformer('valurank/MiniLM-L6-Keyword-Extraction')
kw_extractor = KeyBERT('valurank/MiniLM-L6-Keyword-Extraction')
def get_keybert_results_with_vectorizer(text, number_of_results=20):
try:
keywords = kw_extractor.extract_keywords(text, vectorizer=KeyphraseCountVectorizer(), stop_words=None, top_n=number_of_results)
keywords = [i for i in keywords if i[1] > 0.20]
keybert_diversity_phrases = []
for i, j in keywords:
keybert_diversity_phrases.append(i)
output_df = pd.DataFrame()
output_df['keyword'] = np.array(keybert_diversity_phrases)
return output_df.head(20)
except Exception:
return "Error"
demo = gr.Interface(get_keybert_results_with_vectorizer, inputs=gr.inputs.Textbox(),
outputs=gr.outputs.Dataframe(),
title = "Keyword Extraction")
if __name__ == "__main__":
demo.launch(debug=True)
|