Spaces:
Sleeping
Sleeping
File size: 9,182 Bytes
d5ed529 771e8d7 a427753 e5fb7b0 a427753 d5ed529 834e5f8 e821217 834e5f8 2458bb6 67d69a9 d5ed529 76eb72e 834e5f8 53233bd 834e5f8 53233bd 834e5f8 53233bd 834e5f8 89f1436 834e5f8 89f1436 834e5f8 89f1436 834e5f8 e821217 2b8dfc5 834e5f8 89f1436 53233bd 89f1436 53233bd 834e5f8 89f1436 834e5f8 f026aa7 834e5f8 89f1436 834e5f8 89f1436 e821217 d5ed529 834e5f8 e821217 e5fb7b0 89f1436 e5fb7b0 76eb72e 834e5f8 d5ed529 2458bb6 d5ed529 76eb72e 834e5f8 d5ed529 76eb72e d5ed529 834e5f8 d5ed529 53233bd 76eb72e d5ed529 2458bb6 d5ed529 89f1436 d5ed529 89f1436 e5fb7b0 d5ed529 89f1436 d5ed529 22ac629 d5ed529 89f1436 d5ed529 834e5f8 22ac629 89f1436 d5ed529 834e5f8 89f1436 d5ed529 89f1436 e5fb7b0 f026aa7 89f1436 e5fb7b0 771e8d7 834e5f8 d5ed529 e821217 d5ed529 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
from omegaconf import OmegaConf
import streamlit as st
import os
from PIL import Image
import sys
from dotenv import load_dotenv
load_dotenv(override=True)
from pydantic import Field, BaseModel
from vectara_agent.agent import Agent, AgentStatusType
from vectara_agent.tools import ToolsFactory
from vectara_agent.tools_catalog import rephrase_text
teaching_styles = ['Inquiry-based', 'Socratic', 'traditional']
languages = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Arabic': 'ar', 'Chinese': 'zh-cn',
'Hebrew': 'he', 'Hindi': 'hi', 'Italian': 'it', 'Japanese': 'ja', 'Korean': 'ko', 'Portuguese': 'pt'}
initial_prompt = "How can I help you today?"
def create_tools(cfg):
def adjust_response_to_student(
text: str = Field(description='the text to adjust. may include citations in markdown format.'),
age: int = Field(description='the age of the student. An integer'),
style: str = Field(description='teaching style'),
language: str = Field(description='the language')
) -> str:
"""
Rephrase the provided text to match the student's age, desired teaching style and language
"""
instructions = f'''
The following is some text.
Adjust the response to match the student's age of {age}, the {style} teaching style.
For example, in the inquiry-based teaching style, choose to ask questions that encourage the student to think critically instead of repsonding directly with the answer.
Or in the socratic teaching style, choose to ask questions that lead the student to the answer.
Always respond in the {language} language.''' \
.replace("{style}", cfg.style) \
.replace("{language}", cfg.language) \
.replace("{student_age}", str(cfg.student_age))
return rephrase_text(text, instructions)
class JusticeHarvardArgs(BaseModel):
query: str = Field(..., description="The user query.")
tools_factory = ToolsFactory(vectara_api_key=cfg.api_key,
vectara_customer_id=cfg.customer_id,
vectara_corpus_id=cfg.corpus_id)
query_tool = tools_factory.create_rag_tool(
tool_name = "justice_harvard_query",
tool_description = """
Answer questions about the justice, morality, politics and related topics,
based on transcripts of recordings from the Justice Harvard class that includes a lot of content on these topics.
When using the tool it's best to ask simple short questions. You can break complex questions into sub-queries.
""",
tool_args_schema = JusticeHarvardArgs,
reranker = "multilingual_reranker_v1", rerank_k = 100,
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
summary_num_results = 10,
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
include_citations = True,
)
return (tools_factory.get_tools(
[
adjust_response_to_student,
]
) +
tools_factory.standard_tools() +
tools_factory.guardrail_tools() +
[query_tool]
)
def initialize_agent(_cfg):
if 'agent' in st.session_state:
return st.session_state.agent
bot_instructions = f"""
- You are a helpful teacher assistant, with expertise in education in various teaching styles.
- Obtain information using tools to answer the user's query.
- If the tool cannot provide information relevant to the user's query, tell the user that you are unable to provide an answer.
- If the tool can provide relevant information, use the adjust_response_to_student tool
to rephrase the text (including citations if any) to ensure it fits the student's age of {_cfg.student_age},
the {_cfg.style} teaching style and the {_cfg.language} language.
- When showing citations, adjust the URL to incorporate the start time of the video, as included in the metadata.
- When showing citations, use sequential numbers to reference the citations.
- Response in a concise and clear manner, and provide the most relevant information to the student.
- Never discuss politics, and always respond politely.
"""
def update_func(status_type: AgentStatusType, msg: str):
if status_type != AgentStatusType.AGENT_UPDATE:
output = f"{status_type.value} - {msg}"
st.session_state.log_messages.append(output)
agent = Agent(
tools=create_tools(_cfg),
topic="justice, morality, politics, and philosophy",
custom_instructions=bot_instructions,
update_func=update_func
)
return agent
def toggle_logs():
st.session_state.show_logs = not st.session_state.show_logs
def launch_bot():
def reset():
cfg = st.session_state.cfg
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}]
st.session_state.thinking_message = "Agent at work..."
st.session_state.agent = initialize_agent(cfg)
st.session_state.log_messages = []
st.session_state.prompt = None
st.session_state.show_logs = False
st.set_page_config(page_title="Justice Harvard Teaching Assistant", layout="wide")
if 'cfg' not in st.session_state:
cfg = OmegaConf.create({
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
'api_key': str(os.environ['VECTARA_API_KEY']),
'style': teaching_styles[0],
'language': 'English',
'student_age': 18
})
st.session_state.cfg = cfg
st.session_state.style = cfg.style
st.session_state.language = cfg.language
st.session_state.student_age = cfg.student_age
reset()
cfg = st.session_state.cfg
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=175)
st.markdown("## Welcome to the Justice Harvard e-learning assistant demo.\n\n\n")
st.markdown("\n")
cfg.style = st.selectbox('Teacher Style:', teaching_styles)
if st.session_state.style != cfg.style:
st.session_state.style = cfg.style
reset()
st.markdown("\n")
cfg.language = st.selectbox('Language:', languages.keys())
if st.session_state.language != cfg.language:
st.session_state.langage = cfg.language
reset()
st.markdown("\n")
cfg.student_age = st.number_input(
'Student age:', min_value=13, max_value=99, value=cfg.student_age,
step=1, format='%i'
)
if st.session_state.student_age != cfg.student_age:
st.session_state.student_age = cfg.student_age
reset()
st.markdown("\n\n")
bc1, _ = st.columns([1, 1])
with bc1:
if st.button('Start Over'):
reset()
st.markdown("---")
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n\n"
"It demonstrates the use of Agentic Chat functionality with Vectara"
)
st.markdown("---")
if "messages" not in st.session_state.keys():
reset()
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message["avatar"]):
st.write(message["content"])
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'})
st.session_state.prompt = prompt # Save the prompt in session state
st.session_state.log_messages = []
st.session_state.show_logs = False
with st.chat_message("user", avatar='π§βπ»'):
print(f"Starting new question: {prompt}\n")
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.prompt:
with st.chat_message("assistant", avatar='π€'):
with st.spinner(st.session_state.thinking_message):
res = st.session_state.agent.chat(st.session_state.prompt)
res = res.replace('$', '\\$') # escape dollar sign for markdown
message = {"role": "assistant", "content": res, "avatar": 'π€'}
st.session_state.messages.append(message)
st.markdown(res)
st.session_state.prompt = None
log_placeholder = st.empty()
with log_placeholder.container():
if st.session_state.show_logs:
st.button("Hide Logs", on_click=toggle_logs)
for msg in st.session_state.log_messages:
st.text(msg)
else:
if len(st.session_state.log_messages) > 0:
st.button("Show Logs", on_click=toggle_logs)
sys.stdout.flush()
if __name__ == "__main__":
launch_bot()
|