Spaces:
Running
Running
File size: 7,913 Bytes
d5ed529 771e8d7 834e5f8 d5ed529 834e5f8 2458bb6 76eb72e 2458bb6 d5ed529 76eb72e 834e5f8 d5ed529 834e5f8 76eb72e 834e5f8 d5ed529 2458bb6 d5ed529 76eb72e 834e5f8 d5ed529 76eb72e d5ed529 834e5f8 d5ed529 76eb72e d5ed529 2458bb6 d5ed529 22ac629 d5ed529 834e5f8 22ac629 d5ed529 834e5f8 d5ed529 834e5f8 d5ed529 834e5f8 771e8d7 834e5f8 d5ed529 834e5f8 d5ed529 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
from omegaconf import OmegaConf
import streamlit as st
import os
from PIL import Image
import re
import sys
import datetime
from pydantic import Field, BaseModel
from vectara_agent.agent import Agent, AgentType, AgentStatusType
from vectara_agent.tools import ToolsFactory
from vectara_agent.tools_catalog import rephrase_text
teaching_styles = ['traditional', 'Inquiry-based', 'Socratic']
languages = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Arabic': 'ar', 'Chinese': 'zh-cn',
'Hebrew': 'he', 'Hindi': 'hi', 'Italian': 'it', 'Japanese': 'ja', 'Korean': 'ko', 'Portuguese': 'pt'}
initial_prompt = "How can I help you today?"
def create_tools(cfg):
def adjust_response_to_student(
text: str = Field(description='the original text.'),
age: int = Field(description='the age of the student. An integer'),
style: str = Field(description='teaching style'),
language: str = Field(description='the language')
) -> str:
"""
Rephrase the text to match the student's age, desired teaching style and language
"""
instructions = f'''
The following is response the teacher is planning to provide to a student based on their question.
Please adjust the response to match the student's age of {age}, the {style} teaching style.
For example, in the inquiry-based teaching style, choose to ask questions that encourage the student to think critically instead of repsonding directly with the answer.
Or in the socratic teaching style, choose to ask questions that lead the student to the answer.
Always respond in the {language} language.''' \
.replace("{style}", cfg.style) \
.replace("{language}", cfg.language) \
.replace("{student_age}", str(cfg.student_age))
return rephrase_text(text, instructions)
class JusticeHarvardArgs(BaseModel):
query: str = Field(..., description="The user query.")
tools_factory = ToolsFactory(vectara_api_key=cfg.api_key,
vectara_customer_id=cfg.customer_id,
vectara_corpus_id=cfg.corpus_id)
query_tool = tools_factory.create_rag_tool(
tool_name = "justice_harvard_query",
tool_description = """
Given a user query, returns a response (str) based on the content of the Justice Harvard lecture transcripts.
It can answer questions about the justice, morality, politics and related topics,
based on transcripts of recordings from the Justice Harvard class that includes a lot of content on these topics.
When using the tool it's best to ask simple short questions. You can break complex questions into sub-queries.
""",
tool_args_schema = JusticeHarvardArgs,
tool_filter_template = '',
reranker = "multilingual_reranker_v1", rerank_k = 100,
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.01,
summary_num_results = 10,
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
)
return (tools_factory.get_tools(
[
adjust_response_to_student,
]
) +
tools_factory.standard_tools() +
tools_factory.guardrail_tools() +
[query_tool]
)
@st.cache_resource
def initialize_agent(agent_type: AgentType, _cfg):
date = datetime.datetime.now().strftime("%Y-%m-%d")
bot_instructions = f"""
- You are a helpful teacher assistant, with expertise in education in various teaching styles.
- Today's date is {date}.
- Response in a concise and clear manner, and provide the most relevant information to the student.
- Use tools when available instead of depending on your own knowledge.
"""
def update_func(status_type: AgentStatusType, msg: str):
output = f"{status_type.value} - {msg}"
st.session_state.thinking_placeholder.text(output)
agent = Agent(
agent_type=agent_type,
tools=create_tools(_cfg),
topic="An educator with expertise in philosophy",
custom_instructions=bot_instructions,
update_func=update_func
)
return agent
def launch_bot(agent_type: AgentType):
def reset():
cfg = st.session_state.cfg
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}]
st.session_state.thinking_message = "Agent at work..."
st.session_state.agent = initialize_agent(agent_type, cfg)
st.set_page_config(page_title="Justice Harvard Teaching Assistant", layout="wide")
if 'cfg' not in st.session_state:
cfg = OmegaConf.create({
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
'api_key': str(os.environ['VECTARA_API_KEY']),
'style': teaching_styles[0],
'language': 'English',
'student_age': 18
})
st.session_state.cfg = cfg
st.session_state.style = cfg.style
st.session_state.language = cfg.language
st.session_state.student_age = cfg.student_age
reset()
cfg = st.session_state.cfg
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=250)
st.markdown("## Welcome to the Justice Harvard e-learning assistant demo.\n\n\n")
st.markdown("\n")
cfg.style = st.selectbox('Teacher Style:', teaching_styles)
if st.session_state.style != cfg.style:
st.session_state.style = cfg.style
reset()
st.markdown("\n")
cfg.language = st.selectbox('Language:', languages.keys())
if st.session_state.language != cfg.language:
st.session_state.langage = cfg.language
reset()
st.markdown("\n")
cfg.student_age = st.number_input(
'Student age:', min_value=13, value=cfg.student_age,
step=1, format='%i'
)
if st.session_state.student_age != cfg.student_age:
st.session_state.student_age = cfg.student_age
reset()
st.markdown("\n\n")
if st.button('Start Over'):
reset()
st.markdown("---")
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n\n"
"It demonstrates the use of Agentic Chat functionality with Vectara"
)
st.markdown("---")
if "messages" not in st.session_state.keys():
reset()
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message["avatar"]):
st.write(message["content"])
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'})
with st.chat_message("user", avatar='π§βπ»'):
print(f"Starting new question: {prompt}\n")
st.write(prompt)
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant", avatar='π€'):
with st.spinner(st.session_state.thinking_message):
st.session_state.thinking_placeholder = st.empty()
res = st.session_state.agent.chat(prompt)
cleaned = re.sub(r'\[\d+\]', '', res).replace('$', '\\$')
message = {"role": "assistant", "content": cleaned, "avatar": 'π€'}
st.session_state.messages.append(message)
st.session_state.thinking_placeholder.empty()
st.rerun()
sys.stdout.flush()
if __name__ == "__main__":
launch_bot(agent_type=AgentType.OPENAI)
|