File size: 7,913 Bytes
d5ed529
 
 
 
 
 
771e8d7
834e5f8
d5ed529
834e5f8
 
 
 
2458bb6
76eb72e
2458bb6
d5ed529
 
 
 
76eb72e
834e5f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5ed529
 
834e5f8
 
 
76eb72e
834e5f8
d5ed529
 
 
 
 
2458bb6
d5ed529
76eb72e
834e5f8
d5ed529
 
76eb72e
 
 
d5ed529
834e5f8
d5ed529
 
 
 
 
 
76eb72e
d5ed529
 
2458bb6
d5ed529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22ac629
d5ed529
 
 
 
 
834e5f8
22ac629
d5ed529
 
 
834e5f8
 
d5ed529
834e5f8
d5ed529
 
834e5f8
 
 
771e8d7
834e5f8
 
d5ed529
834e5f8
d5ed529
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

from omegaconf import OmegaConf
import streamlit as st
import os
from PIL import Image
import re
import sys
import datetime

from pydantic import Field, BaseModel
from vectara_agent.agent import Agent, AgentType, AgentStatusType
from vectara_agent.tools import ToolsFactory
from vectara_agent.tools_catalog import rephrase_text


teaching_styles = ['traditional', 'Inquiry-based', 'Socratic']
languages = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Arabic': 'ar', 'Chinese': 'zh-cn', 
             'Hebrew': 'he', 'Hindi': 'hi', 'Italian': 'it', 'Japanese': 'ja', 'Korean': 'ko', 'Portuguese': 'pt'}
initial_prompt = "How can I help you today?"


def create_tools(cfg):        

    def adjust_response_to_student(
            text: str = Field(description='the original text.'), 
            age: int = Field(description='the age of the student. An integer'), 
            style: str = Field(description='teaching style'), 
            language: str = Field(description='the language')

        ) -> str:
        """
        Rephrase the text to match the student's age, desired teaching style and language
        """
        instructions = f'''
        The following is response the teacher is planning to provide to a student based on their question.
        Please adjust the response to match the student's age of {age}, the {style} teaching style.
        For example, in the inquiry-based teaching style, choose to ask questions that encourage the student to think critically instead of repsonding directly with the answer.
        Or in the socratic teaching style, choose to ask questions that lead the student to the answer.
        Always respond in the {language} language.''' \
            .replace("{style}", cfg.style) \
            .replace("{language}", cfg.language) \
            .replace("{student_age}", str(cfg.student_age))

        return rephrase_text(text, instructions)


    class JusticeHarvardArgs(BaseModel):
        query: str = Field(..., description="The user query.")

    tools_factory = ToolsFactory(vectara_api_key=cfg.api_key, 
                                 vectara_customer_id=cfg.customer_id, 
                                 vectara_corpus_id=cfg.corpus_id)
    query_tool = tools_factory.create_rag_tool(
        tool_name = "justice_harvard_query",
        tool_description = """
        Given a user query, returns a response (str) based on the content of the Justice Harvard lecture transcripts.
        It can answer questions about the justice, morality, politics and related topics,
        based on transcripts of recordings from the Justice Harvard class that includes a lot of content on these topics.
        When using the tool it's best to ask simple short questions. You can break complex questions into sub-queries.
        """,
        tool_args_schema = JusticeHarvardArgs,
        tool_filter_template = '',
        reranker = "multilingual_reranker_v1", rerank_k = 100, 
        n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.01,
        summary_num_results = 10,
        vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
    )

    return (tools_factory.get_tools(
                [
                    adjust_response_to_student,
                ]
            ) +
            tools_factory.standard_tools() + 
            tools_factory.guardrail_tools() +
            [query_tool]
    )

@st.cache_resource
def initialize_agent(agent_type: AgentType, _cfg):
    date = datetime.datetime.now().strftime("%Y-%m-%d")
    bot_instructions = f"""
    - You are a helpful teacher assistant, with expertise in education in various teaching styles.
    - Today's date is {date}.
    - Response in a concise and clear manner, and provide the most relevant information to the student.
    - Use tools when available instead of depending on your own knowledge.
    """

    def update_func(status_type: AgentStatusType, msg: str):
        output = f"{status_type.value} - {msg}"
        st.session_state.thinking_placeholder.text(output)

    agent = Agent(
        agent_type=agent_type,
        tools=create_tools(_cfg),
        topic="An educator with expertise in philosophy",
        custom_instructions=bot_instructions,
        update_func=update_func
    )
    return agent

def launch_bot(agent_type: AgentType):
    def reset():
        cfg = st.session_state.cfg
        st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "πŸ¦–"}]
        st.session_state.thinking_message = "Agent at work..."
        st.session_state.agent = initialize_agent(agent_type, cfg)

    st.set_page_config(page_title="Justice Harvard Teaching Assistant", layout="wide")
    if 'cfg' not in st.session_state:
        cfg = OmegaConf.create({
            'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
            'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
            'api_key': str(os.environ['VECTARA_API_KEY']),
            'style': teaching_styles[0],
            'language': 'English',
            'student_age': 18

        })
        st.session_state.cfg = cfg
        st.session_state.style = cfg.style
        st.session_state.language = cfg.language
        st.session_state.student_age = cfg.student_age

        reset()
    cfg = st.session_state.cfg

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.image(image, width=250)
        st.markdown("## Welcome to the Justice Harvard e-learning assistant demo.\n\n\n")

        st.markdown("\n")
        cfg.style = st.selectbox('Teacher Style:', teaching_styles)
        if st.session_state.style != cfg.style:
            st.session_state.style = cfg.style
            reset()

        st.markdown("\n")
        cfg.language = st.selectbox('Language:', languages.keys())
        if st.session_state.language != cfg.language:
            st.session_state.langage = cfg.language
            reset()

        st.markdown("\n") 
        cfg.student_age = st.number_input(
            'Student age:',  min_value=13, value=cfg.student_age,
            step=1, format='%i'
        )
        if st.session_state.student_age != cfg.student_age:
            st.session_state.student_age = cfg.student_age
            reset()

        st.markdown("\n\n")
        if st.button('Start Over'):
            reset()

        st.markdown("---")
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n\n"
            "It demonstrates the use of Agentic Chat functionality with Vectara"
        )
        st.markdown("---")


    if "messages" not in st.session_state.keys():
        reset()

    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"], avatar=message["avatar"]):
            st.write(message["content"])

    # User-provided prompt
    if prompt := st.chat_input():
        st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'πŸ§‘β€πŸ’»'})
        with st.chat_message("user", avatar='πŸ§‘β€πŸ’»'):
            print(f"Starting new question: {prompt}\n")
            st.write(prompt)

    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant", avatar='πŸ€–'):
            with st.spinner(st.session_state.thinking_message):
                st.session_state.thinking_placeholder = st.empty()
                res = st.session_state.agent.chat(prompt)
                cleaned = re.sub(r'\[\d+\]', '', res).replace('$', '\\$')
            message = {"role": "assistant", "content": cleaned, "avatar": 'πŸ€–'}
            st.session_state.messages.append(message)
            st.session_state.thinking_placeholder.empty()
            st.rerun()
  
    sys.stdout.flush()
    
 
if __name__ == "__main__":
    launch_bot(agent_type=AgentType.OPENAI)