File size: 7,045 Bytes
30d349c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f860ce
30d349c
 
 
 
0d707b6
30d349c
 
 
 
4f860ce
 
0d707b6
 
 
 
 
 
30d349c
 
 
 
 
 
 
 
 
 
 
0d707b6
 
4f860ce
 
30d349c
 
 
 
 
 
 
0d707b6
30d349c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f860ce
30d349c
 
4f860ce
30d349c
 
 
 
 
 
 
 
 
 
 
2c1a214
30d349c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import requests
import json
import re
from urllib.parse import quote

def extract_between_tags(text, start_tag, end_tag):
    start_index = text.find(start_tag)
    end_index = text.find(end_tag, start_index)
    return text[start_index+len(start_tag):end_index-len(end_tag)]

class VectaraQuery():
    def __init__(self, api_key: str, customer_id: str, corpus_id: str, prompt_name: str = None):
        self.customer_id = customer_id
        self.corpus_id = corpus_id
        self.api_key = api_key
        self.prompt_name = prompt_name if prompt_name else "vectara-experimental-summary-ext-2023-12-11-large"
        self.conv_id = None

    def get_body(self, user_response: str, role: str, topic: str, style: str):
        corpora_key_list = [{
            'customer_id': self.customer_id, 'corpus_id': self.corpus_id, 'lexical_interpolation_config': {'lambda': 0.025}
        }]

        user_response = user_response.replace('"', '\\"')  # Escape double quotes
        prompt = f'''
        [
            {{
                "role": "system",
                "content": "You are a professional debate bot. 
                You specialize in the {style} debate style.
                You are provided with search results related to {topic}. 
                Follow these INSTRUCTIONS carefully:
                1. Provide a thoughtful and convincing reply.
                2. Do not base your response on information or knowledge that is not in the search results.
                3. Respond while demonstrating respect to the other party and the topic. 
                4. Limit your responses to not more than 2 paragraphs."
            }},
            {{
                "role": "user",
                "content": "
                    #foreach ($qResult in $vectaraQueryResults)
                        Search result $esc.java(${{foreach.index}}+1): $esc.java(${{qResult.getText()}})
                    #end
                "
            }},
            {{
                "role": "user",
                "content": "provide a convincing reply {role} {topic}, in response to the last argument: '{user_response}'.
                Consider the search results as relevant information with which to form your response, but do not mention the results in your response.
                Use the {style} debate style to make your argument.
                Do not repeat earlier arguments and make sure your new response is coherent with the previous arguments."
            }}
        ]
        '''

        return {
            'query': [
                { 
                    'query': f"{role} {topic}, how would you respond?",
                    'start': 0,
                    'numResults': 50,
                    'corpusKey': corpora_key_list,
                    'context_config': {
                        'sentences_before': 2,
                        'sentences_after': 2,
                        'start_tag': "%START_SNIPPET%",
                        'end_tag': "%END_SNIPPET%",
                    },
                    'rerankingConfig':
                    {
                        'rerankerId': 272725718,
                        'mmrConfig': {
                            'diversityBias': 0.3
                        }
                    },
                    'summary': [
                        {
                            'responseLang': 'eng',
                            'maxSummarizedResults': 7,
                            'summarizerPromptName': self.prompt_name,
                            'promptText': prompt,
                            'chat': {
                                'store': True,
                                'conversationId': self.conv_id
                            },
                        }
                    ]
                } 
            ]
        }

    def get_headers(self):
        return {
            "Content-Type": "application/json",
            "Accept": "application/json",
            "customer-id": self.customer_id,
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }

    def submit_query(self, query_str: str, bot_role: str, topic: str, style: str):

        endpoint = f"https://api.vectara.io/v1/stream-query"
        body = self.get_body(query_str, bot_role, topic, style)

        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers(), stream=True) 
        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            return "Sorry, something went wrong in my brain. Please try again later."

        chunks = []
        accumulated_text = ""  # Initialize text accumulation
        pattern_max_length = 50  # Example heuristic
        for line in response.iter_lines():
            if line:  # filter out keep-alive new lines
                data = json.loads(line.decode('utf-8'))                
                res = data['result']
                response_set = res['responseSet']                
                if response_set is None:
                    # grab next chunk and yield it as output
                    summary = res.get('summary', None)
                    if summary is None or len(summary)==0:
                        continue
                    else:
                        chat = summary.get('chat', None)
                        if chat and chat.get('status', None):
                            st_code = chat['status']
                            print(f"Chat query failed with code {st_code}")
                            if st_code == 'RESOURCE_EXHAUSTED':
                                self.conv_id = None
                                return 'Sorry, Vectara chat turns exceeds plan limit.'
                            return 'Sorry, something went wrong in my brain. Please try again later.'
                        conv_id = chat.get('conversationId', None) if chat else None
                        if conv_id:
                            self.conv_id = conv_id
                        
                    chunk = summary['text']
                    accumulated_text += chunk  # Append current chunk to accumulation
                    if len(accumulated_text) > pattern_max_length:
                        accumulated_text = re.sub(r"\[\d+\]", "", accumulated_text)
                        accumulated_text = re.sub(r"\s+\.", ".", accumulated_text)
                        out_chunk = accumulated_text[:-pattern_max_length]
                        chunks.append(out_chunk)
                        yield out_chunk
                        accumulated_text = accumulated_text[-pattern_max_length:]

                    if summary['done']:
                        break

        # yield the last piece
        if len(accumulated_text) > 0:
            accumulated_text = re.sub(r" \[\d+\]\.", ".", accumulated_text)
            chunks.append(accumulated_text)
            yield accumulated_text        
        
        return ''.join(chunks)