Spaces:
Running
Running
from omegaconf import OmegaConf | |
import streamlit as st | |
import os | |
from PIL import Image | |
import re | |
import sys | |
import datetime | |
from pydantic import Field, BaseModel | |
from vectara_agent.agent import Agent, AgentType, AgentStatusType | |
from vectara_agent.tools import ToolsFactory | |
tickers = { | |
"AAPL": "Apple Computer", | |
"GOOG": "Google", | |
"AMZN": "Amazon", | |
"SNOW": "Snowflake", | |
"TEAM": "Atlassian", | |
"TSLA": "Tesla", | |
"NVDA": "Nvidia", | |
"MSFT": "Microsoft", | |
"AMD": "Advanced Micro Devices", | |
"INTC": "Intel", | |
"NFLX": "Netflix", | |
} | |
years = [2020, 2021, 2022, 2023, 2024] | |
initial_prompt = "How can I help you today?" | |
def create_tools(cfg): | |
def get_company_info() -> list[str]: | |
""" | |
Returns a dictionary of companies you can query about their financial reports. | |
The output is a dictionary of valid ticker symbols mapped to company names. | |
You can use this to identify the companies you can query about, and their ticker information. | |
""" | |
return tickers | |
def get_valid_years() -> list[str]: | |
""" | |
Returns a list of the years for which financial reports are available. | |
""" | |
return years | |
class QueryFinancialReportsArgs(BaseModel): | |
query: str = Field(..., description="The user query.") | |
year: int = Field(..., description=f"The year. an integer between {min(years)} and {max(years)}.") | |
ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.") | |
tools_factory = ToolsFactory(vectara_api_key=cfg.api_key, | |
vectara_customer_id=cfg.customer_id, | |
vectara_corpus_id=cfg.corpus_id) | |
query_financial_reports = tools_factory.create_rag_tool( | |
tool_name = "query_financial_reports", | |
tool_description = """ | |
Given a company name and year, | |
returns a response (str) to a user query about the company's financial reports for that year. | |
make sure to provide the a valid company ticker and year. | |
""", | |
tool_args_schema = QueryFinancialReportsArgs, | |
tool_filter_template = "doc.year = {year} and doc.ticker = '{ticker}'", | |
reranker = "multilingual_reranker_v1", rerank_k = 100, | |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.01, | |
summary_num_results = 10, | |
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni', | |
) | |
return (tools_factory.get_tools( | |
[ | |
get_company_info, | |
get_valid_years, | |
] | |
) + | |
tools_factory.standard_tools() + | |
tools_factory.financial_tools() + | |
tools_factory.guardrail_tools() + | |
[query_financial_reports] | |
) | |
def initialize_agent(agent_type: AgentType, _cfg): | |
date = datetime.datetime.now().strftime("%Y-%m-%d") | |
financial_bot_instructions = f""" | |
- You are a helpful financial assistant, with expertise in finanal reporting, in conversation with a user. | |
- Today's date is {date}. | |
- Report in a concise and clear manner, and provide the most relevant information to the user. | |
- Respond in a concise format by using appropriate units of measure (e.g., K for thousands, M for millions, B for billions). | |
- Use tools when available instead of depending on your own knowledge. | |
- When querying a tool for a numeric value or KPI, use a concise and non-ambiguous description of what you are looking for. | |
- If you calculate a metric, make sure you have all the necessary information to complete the calculation. Don't guess. | |
- Be very careful not to report results you are not confident about. | |
""" | |
def update_func(status_type: AgentStatusType, msg: str): | |
output = f"{status_type.value} - {msg}" | |
st.session_state.thinking_placeholder.text(output) | |
agent = Agent( | |
agent_type=agent_type, | |
tools=create_tools(_cfg), | |
topic="10-K annual financial reports", | |
custom_instructions=financial_bot_instructions, | |
update_func=update_func | |
) | |
return agent | |
def launch_bot(agent_type: AgentType): | |
def reset(): | |
cfg = st.session_state.cfg | |
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}] | |
st.session_state.thinking_message = "Agent at work..." | |
st.session_state.agent = initialize_agent(agent_type, cfg) | |
st.set_page_config(page_title="Financial Assistant", layout="wide") | |
if 'cfg' not in st.session_state: | |
cfg = OmegaConf.create({ | |
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']), | |
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']), | |
'api_key': str(os.environ['VECTARA_API_KEY']), | |
}) | |
st.session_state.cfg = cfg | |
reset() | |
cfg = st.session_state.cfg | |
# left side content | |
with st.sidebar: | |
image = Image.open('Vectara-logo.png') | |
st.image(image, width=250) | |
st.markdown("## Welcome to the financial assistant demo.\n\n\n") | |
companies = ", ".join(tickers.values()) | |
st.markdown( | |
f"This assistant can help you with any questions about the financials of several companies:\n\n **{companies}**.\n" | |
) | |
st.markdown("\n\n") | |
if st.button('Start Over'): | |
reset() | |
st.markdown("---") | |
st.markdown( | |
"## How this works?\n" | |
"This app was built with [Vectara](https://vectara.com).\n\n" | |
"It demonstrates the use of Agentic Chat functionality with Vectara" | |
) | |
st.markdown("---") | |
if "messages" not in st.session_state.keys(): | |
reset() | |
# Display chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"], avatar=message["avatar"]): | |
st.write(message["content"]) | |
# User-provided prompt | |
if prompt := st.chat_input(): | |
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'}) | |
with st.chat_message("user", avatar='π§βπ»'): | |
print(f"Starting new question: {prompt}\n") | |
st.write(prompt) | |
# Generate a new response if last message is not from assistant | |
if st.session_state.messages[-1]["role"] != "assistant": | |
with st.chat_message("assistant", avatar='π€'): | |
with st.spinner(st.session_state.thinking_message): | |
st.session_state.thinking_placeholder = st.empty() | |
res = st.session_state.agent.chat(prompt) | |
cleaned = re.sub(r'\[\d+\]', '', res).replace('$', '\\$') | |
message = {"role": "assistant", "content": cleaned, "avatar": 'π€'} | |
st.session_state.messages.append(message) | |
st.session_state.thinking_placeholder.empty() | |
st.rerun() | |
sys.stdout.flush() | |
if __name__ == "__main__": | |
launch_bot(agent_type=AgentType.OPENAI) | |