Spaces:
Running
Running
initial
Browse files- Dockerfile +27 -0
- README.md +6 -5
- Vectara-logo.png +0 -0
- app.py +178 -0
- requirements.txt +10 -0
- vectara-agent-cache.sqlite +0 -0
Dockerfile
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY ./requirements.txt /app/requirements.txt
|
6 |
+
|
7 |
+
RUN if [ -z "$GITHUB_TOKEN" ]; then echo "GITHUB_TOKEN is not set"; exit 1; fi && \
|
8 |
+
sed -i "s/{GITHUB_TOKEN}/$GITHUB_TOKEN/g" /app/requirements.txt
|
9 |
+
RUN pip3 install --no-cache-dir -r /app/requirements.txt
|
10 |
+
|
11 |
+
# User
|
12 |
+
RUN useradd -m -u 1000 user
|
13 |
+
USER user
|
14 |
+
ENV HOME /home/user
|
15 |
+
ENV PATH $HOME/.local/bin:$PATH
|
16 |
+
|
17 |
+
WORKDIR $HOME
|
18 |
+
RUN mkdir app
|
19 |
+
WORKDIR $HOME/app
|
20 |
+
COPY . $HOME/app
|
21 |
+
|
22 |
+
EXPOSE 8501
|
23 |
+
CMD streamlit run app.py \
|
24 |
+
--server.headless true \
|
25 |
+
--server.enableCORS false \
|
26 |
+
--server.enableXsrfProtection false \
|
27 |
+
--server.fileWatcherType none
|
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
---
|
2 |
-
title: Finance
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Finance Chatbot
|
3 |
+
emoji: π¨
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.32.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
short_description: An AI assistant with company financial reports
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
Vectara-logo.png
ADDED
app.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from omegaconf import OmegaConf
|
3 |
+
import streamlit as st
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
import re
|
7 |
+
import sys
|
8 |
+
|
9 |
+
from pydantic import Field, BaseModel
|
10 |
+
from vectara_agent.agent import Agent, AgentType, AgentStatusType
|
11 |
+
from vectara_agent.tools import ToolsFactory
|
12 |
+
|
13 |
+
|
14 |
+
tickers = {
|
15 |
+
"AAPL": "Apple Computer",
|
16 |
+
"GOOG": "Google",
|
17 |
+
"AMZN": "Amazon",
|
18 |
+
"SNOW": "Snowflake",
|
19 |
+
"TEAM": "Atlassian",
|
20 |
+
"TSLA": "Tesla",
|
21 |
+
"NVDA": "Nvidia",
|
22 |
+
"MSFT": "Microsoft",
|
23 |
+
"AMD": "Advanced Micro Devices",
|
24 |
+
}
|
25 |
+
years = [2020, 2021, 2022, 2023, 2024]
|
26 |
+
initial_prompt = "How can I help you today?"
|
27 |
+
|
28 |
+
def create_tools(cfg):
|
29 |
+
|
30 |
+
def get_company_info() -> list[str]:
|
31 |
+
"""
|
32 |
+
Returns a dictionary of companies you can query about their financial reports.
|
33 |
+
The output is a dictionary of valid ticker symbols mapped to company names.
|
34 |
+
You can use this to identify the companies you can query about, and their ticker information.
|
35 |
+
"""
|
36 |
+
return tickers
|
37 |
+
|
38 |
+
def get_valid_years() -> list[str]:
|
39 |
+
"""
|
40 |
+
Returns a list of the years for which financial reports are available.
|
41 |
+
"""
|
42 |
+
return years
|
43 |
+
|
44 |
+
class QueryFinancialReportsArgs(BaseModel):
|
45 |
+
query: str = Field(..., description="The user query. Must be a question about the company's financials, and should not include the company name, ticker or year.")
|
46 |
+
year: int = Field(..., description=f"The year. an integer between {min(years)} and {max(years)}.")
|
47 |
+
ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.")
|
48 |
+
|
49 |
+
tools_factory = ToolsFactory(vectara_api_key=cfg.api_key,
|
50 |
+
vectara_customer_id=cfg.customer_id,
|
51 |
+
vectara_corpus_id=cfg.corpus_id)
|
52 |
+
query_financial_reports = tools_factory.create_rag_tool(
|
53 |
+
tool_name = "query_financial_reports",
|
54 |
+
tool_description = """
|
55 |
+
Given a company name and year,
|
56 |
+
returns a response (str) to a user query about the company's financials for that year.
|
57 |
+
When using this tool, make sure to provide the a valid company ticker and a year.
|
58 |
+
Use this tool to get financial information one metric at a time.
|
59 |
+
""",
|
60 |
+
tool_args_schema = QueryFinancialReportsArgs,
|
61 |
+
tool_filter_template = "doc.year = {year} and doc.ticker = '{ticker}'",
|
62 |
+
reranker = "slingshot", rerank_k = 100,
|
63 |
+
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.0,
|
64 |
+
summary_num_results = 15,
|
65 |
+
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
|
66 |
+
)
|
67 |
+
|
68 |
+
return (tools_factory.get_tools(
|
69 |
+
[
|
70 |
+
get_company_info,
|
71 |
+
get_valid_years,
|
72 |
+
]
|
73 |
+
) +
|
74 |
+
tools_factory.standard_tools() +
|
75 |
+
tools_factory.financial_tools() +
|
76 |
+
[query_financial_reports]
|
77 |
+
)
|
78 |
+
|
79 |
+
def launch_bot(agent_type: AgentType):
|
80 |
+
def reset():
|
81 |
+
cfg = st.session_state.cfg
|
82 |
+
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}]
|
83 |
+
st.session_state.thinking_message = "Agent at work..."
|
84 |
+
|
85 |
+
# Create the agent
|
86 |
+
print("Creating agent...")
|
87 |
+
|
88 |
+
def update_func(status_type: AgentStatusType, msg: str):
|
89 |
+
output = f"{status_type.value} - {msg}"
|
90 |
+
st.session_state.thinking_placeholder.text(output)
|
91 |
+
|
92 |
+
financial_bot_instructions = """
|
93 |
+
- You are a helpful financial assistant in conversation with a user. Use your financial expertise when crafting a query to the tool, to ensure you get the most accurate information.
|
94 |
+
- You can answer questions, provide insights, or summarize any information from financial reports.
|
95 |
+
- A user may refer to a company's ticker instead of its full name - consider those the same when a user is asking about a company.
|
96 |
+
- When calculating a financial metric, make sure you have all the information from tools to complete the calculation.
|
97 |
+
- In many cases you may need to query tools on each sub-metric separately before computing the final metric.
|
98 |
+
- When using a tool to obtain financial data, consider the fact that information for a certain year may be reported in the the following year's report.
|
99 |
+
- Report financial data in a consistent manner. For example if you report revenue in thousands, always report revenue in thousands.
|
100 |
+
"""
|
101 |
+
|
102 |
+
st.session_state.agent = Agent(
|
103 |
+
agent_type = agent_type,
|
104 |
+
tools = create_tools(cfg),
|
105 |
+
topic = "10-K financial reports",
|
106 |
+
custom_instructions = financial_bot_instructions,
|
107 |
+
update_func = update_func
|
108 |
+
)
|
109 |
+
|
110 |
+
if 'cfg' not in st.session_state:
|
111 |
+
cfg = OmegaConf.create({
|
112 |
+
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
|
113 |
+
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
|
114 |
+
'api_key': str(os.environ['VECTARA_API_KEY']),
|
115 |
+
})
|
116 |
+
st.session_state.cfg = cfg
|
117 |
+
reset()
|
118 |
+
|
119 |
+
cfg = st.session_state.cfg
|
120 |
+
st.set_page_config(page_title="Financial Assistant", layout="wide")
|
121 |
+
|
122 |
+
# left side content
|
123 |
+
with st.sidebar:
|
124 |
+
image = Image.open('Vectara-logo.png')
|
125 |
+
st.image(image, width=250)
|
126 |
+
st.markdown("## Welcome to the financial assistant demo.\n\n\n")
|
127 |
+
companies = ", ".join(tickers.values())
|
128 |
+
st.markdown(
|
129 |
+
f"This assistant can help you with any questions about the financials of the following companies:\n\n **{companies}**.\n\n"
|
130 |
+
"You can ask questions, analyze data, provide insights, or summarize any information from financial reports."
|
131 |
+
)
|
132 |
+
|
133 |
+
st.markdown("\n\n")
|
134 |
+
if st.button('Start Over'):
|
135 |
+
reset()
|
136 |
+
|
137 |
+
st.markdown("---")
|
138 |
+
st.markdown(
|
139 |
+
"## How this works?\n"
|
140 |
+
"This app was built with [Vectara](https://vectara.com).\n\n"
|
141 |
+
"It demonstrates the use of Agentic Chat functionality with Vectara"
|
142 |
+
)
|
143 |
+
st.markdown("---")
|
144 |
+
|
145 |
+
|
146 |
+
if "messages" not in st.session_state.keys():
|
147 |
+
reset()
|
148 |
+
|
149 |
+
# Display chat messages
|
150 |
+
for message in st.session_state.messages:
|
151 |
+
with st.chat_message(message["role"], avatar=message["avatar"]):
|
152 |
+
st.write(message["content"])
|
153 |
+
|
154 |
+
# User-provided prompt
|
155 |
+
if prompt := st.chat_input():
|
156 |
+
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'})
|
157 |
+
with st.chat_message("user", avatar='π§βπ»'):
|
158 |
+
print(f"Starting new question: {prompt}\n")
|
159 |
+
st.write(prompt)
|
160 |
+
|
161 |
+
# Generate a new response if last message is not from assistant
|
162 |
+
if st.session_state.messages[-1]["role"] != "assistant":
|
163 |
+
with st.chat_message("assistant", avatar='π€'):
|
164 |
+
with st.spinner(st.session_state.thinking_message):
|
165 |
+
st.session_state.thinking_placeholder = st.empty()
|
166 |
+
res = st.session_state.agent.chat(prompt)
|
167 |
+
cleaned = re.sub(r'\[\d+\]', '', res.response).replace('$', '\\$')
|
168 |
+
st.write(cleaned)
|
169 |
+
message = {"role": "assistant", "content": cleaned, "avatar": 'π€'}
|
170 |
+
st.session_state.messages.append(message)
|
171 |
+
st.session_state.thinking_placeholder.empty()
|
172 |
+
|
173 |
+
sys.stdout.flush()
|
174 |
+
|
175 |
+
if __name__ == "__main__":
|
176 |
+
print("Starting up...")
|
177 |
+
launch_bot(agent_type = AgentType.REACT)
|
178 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests_to_curl==1.1.0
|
2 |
+
toml==0.10.2
|
3 |
+
omegaconf==2.3.0
|
4 |
+
syrupy==4.0.8
|
5 |
+
streamlit==1.32.2
|
6 |
+
llama-index==0.10.42
|
7 |
+
llama-index-indices-managed-vectara==0.1.4
|
8 |
+
llama-index-agent-openai==0.1.5
|
9 |
+
pydantic==1.10.15
|
10 |
+
git+https://{GITHUB_TOKEN}@github.com/vectara/vectara-agent.git
|
vectara-agent-cache.sqlite
ADDED
Binary file (24.6 kB). View file
|
|