from omegaconf import OmegaConf import streamlit as st import os from PIL import Image import re import sys import datetime import pandas as pd import requests from dotenv import load_dotenv from pydantic import Field, BaseModel from vectara_agent.agent import Agent, AgentStatusType from vectara_agent.tools import ToolsFactory tickers = { "AAPL": "Apple Computer", "GOOG": "Google", "AMZN": "Amazon", "SNOW": "Snowflake", "TEAM": "Atlassian", "TSLA": "Tesla", "NVDA": "Nvidia", "MSFT": "Microsoft", "AMD": "Advanced Micro Devices", "INTC": "Intel", "NFLX": "Netflix", } years = [2020, 2021, 2022, 2023, 2024] initial_prompt = "How can I help you today?" load_dotenv(override=True) def create_tools(cfg): def get_company_info() -> list[str]: """ Returns a dictionary of companies you can query about. Always check this before using any other tool. The output is a dictionary of valid ticker symbols mapped to company names. You can use this to identify the companies you can query about, and their ticker information. """ return tickers def get_valid_years() -> list[str]: """ Returns a list of the years for which financial reports are available. Always check this before using any other tool. """ return years # Tool to get the income statement for a given company and year using the FMP API def get_income_statement( ticker=Field(description="the ticker symbol of the company."), year=Field(description="the year for which to get the income statement."), ) -> str: """ Get the income statement for a given company and year using the FMP (https://financialmodelingprep.com) API. Returns a dictionary with the income statement data. All data is in USD, but you can convert it to more compact form like K, M, B. """ fmp_api_key = os.environ.get("FMP_API_KEY", None) if fmp_api_key is None: return "FMP_API_KEY environment variable not set. This tool does not work." url = f"https://financialmodelingprep.com/api/v3/income-statement/{ticker}?apikey={fmp_api_key}" response = requests.get(url) if response.status_code == 200: data = response.json() income_statement = pd.DataFrame(data) income_statement["date"] = pd.to_datetime(income_statement["date"]) income_statement_specific_year = income_statement[ income_statement["date"].dt.year == int(year) ] values_dict = income_statement_specific_year.to_dict(orient="records")[0] return f"Financial results: {', '.join([f'{key}: {value}' for key, value in values_dict.items() if key not in ['date', 'cik', 'link', 'finalLink']])}" else: return "FMP API returned error. This tool does not work." class QueryTranscriptsArgs(BaseModel): query: str = Field(..., description="The user query.") year: int = Field(..., description=f"The year. an integer between {min(years)} and {max(years)}.") ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.") tools_factory = ToolsFactory(vectara_api_key=cfg.api_key, vectara_customer_id=cfg.customer_id, vectara_corpus_id=cfg.corpus_id) ask_transcripts = tools_factory.create_rag_tool( tool_name = "ask_transcripts", tool_description = """ Given a company name and year, returns a response (str) to a user question about a company, based on analyst call transcripts about the company's financial reports for that year. You can ask this tool any question about the compaany including risks, opportunities, financial performance, competitors and more. make sure to provide the a valid company ticker and year. """, tool_args_schema = QueryTranscriptsArgs, tool_filter_template = "doc.year = {year} and doc.ticker = '{ticker}'", reranker = "multilingual_reranker_v1", rerank_k = 100, n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.01, summary_num_results = 10, vectara_summarizer = 'vectara-summary-ext-24-05-med-omni', ) return (tools_factory.get_tools( [ get_company_info, get_valid_years, get_income_statement, ] ) + tools_factory.standard_tools() + tools_factory.financial_tools() + tools_factory.guardrail_tools() + [ask_transcripts] ) def initialize_agent(_cfg): date = datetime.datetime.now().strftime("%Y-%m-%d") financial_bot_instructions = f""" - You are a helpful financial assistant, with expertise in finanal reporting, in conversation with a user. - Today's date is {date}. - Guardrails: never discuss politics, and always respond politely. - Respond in a compact format by using appropriate units of measure (e.g., K for thousands, M for millions, B for billions). Do not report the same number twice (e.g. $100K and 100,000 USD). - Use tools when available instead of depending on your own knowledge. - If a tool cannot respond properly, retry with a rephrased question or ask the user for more information. - When querying a tool for a numeric value or KPI, use a concise and non-ambiguous description of what you are looking for. - If you calculate a metric, make sure you have all the necessary information to complete the calculation. Don't guess. - Be very careful not to report results you are not confident about. """ def update_func(status_type: AgentStatusType, msg: str): output = f"{status_type.value} - {msg}" st.session_state.log_messages.append(output) agent = Agent( tools=create_tools(_cfg), topic="10-K annual financial reports", custom_instructions=financial_bot_instructions, update_func=update_func ) return agent def launch_bot(): def reset(): cfg = st.session_state.cfg st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "🦖"}] st.session_state.thinking_message = "Agent at work..." st.session_state.agent = initialize_agent(cfg) st.session_state.log_messages = [] st.session_state.show_logs = False st.set_page_config(page_title="Financial Assistant", layout="wide") if 'cfg' not in st.session_state: cfg = OmegaConf.create({ 'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']), 'corpus_id': str(os.environ['VECTARA_CORPUS_ID']), 'api_key': str(os.environ['VECTARA_API_KEY']), }) st.session_state.cfg = cfg reset() cfg = st.session_state.cfg # left side content with st.sidebar: image = Image.open('Vectara-logo.png') st.image(image, width=250) st.markdown("## Welcome to the financial assistant demo.\n\n\n") companies = ", ".join(tickers.values()) st.markdown( f"This assistant can help you with any questions about the financials of several companies:\n\n **{companies}**.\n" ) st.markdown("\n\n") bc1, bc2 = st.columns([1, 1]) with bc1: if st.button('Start Over'): reset() with bc2: if st.button('Show Logs'): st.session_state.show_logs = not st.session_state.show_logs st.markdown("---") st.markdown( "## How this works?\n" "This app was built with [Vectara](https://vectara.com).\n\n" "It demonstrates the use of Agentic RAG functionality with Vectara" ) st.markdown("---") if "messages" not in st.session_state.keys(): reset() # Display chat messages for message in st.session_state.messages: with st.chat_message(message["role"], avatar=message["avatar"]): st.write(message["content"]) # User-provided prompt if prompt := st.chat_input(): st.session_state.messages.append({"role": "user", "content": prompt, "avatar": '🧑‍💻'}) with st.chat_message("user", avatar='🧑‍💻'): print(f"Starting new question: {prompt}\n") st.write(prompt) # Generate a new response if last message is not from assistant if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant", avatar='🤖'): with st.spinner(st.session_state.thinking_message): res = st.session_state.agent.chat(prompt) cleaned = re.sub(r'\[\d+\]', '', res).replace('$', '\\$') message = {"role": "assistant", "content": cleaned, "avatar": '🤖'} st.session_state.messages.append(message) st.rerun() # Display log messages in an expander if st.session_state.show_logs: with st.expander("Agent Log Messages", expanded=True): for msg in st.session_state.log_messages: st.write(msg) if st.button('Close Logs'): st.session_state.show_logs = False st.rerun() sys.stdout.flush() if __name__ == "__main__": launch_bot()