Spaces:
Sleeping
Sleeping
File size: 9,792 Bytes
b5e0c7e dea99b8 25b67f4 e01b95d 92937db b5e0c7e e1452a4 b5e0c7e e1452a4 25b67f4 92937db b5e0c7e e01b95d 72e1546 b5e0c7e e01b95d b5e0c7e e01b95d b5e0c7e e01b95d 72e1546 e01b95d 72e1546 b5e0c7e e01b95d b5e0c7e e01b95d 92937db e01b95d 92937db e01b95d b5e0c7e e01b95d 92937db b5e0c7e e01b95d b5e0c7e e1452a4 dea99b8 e01b95d dea99b8 e01b95d 92937db dee34c5 91ec79e 25b67f4 91ec79e e01b95d 91ec79e e1452a4 b5e0c7e e1452a4 25b67f4 b5e0c7e e01b95d b5e0c7e e01b95d b5e0c7e 25b67f4 b5e0c7e 25b67f4 b5e0c7e e01b95d b5e0c7e 0ea5146 b5e0c7e 25b67f4 b5e0c7e e1452a4 b5e0c7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
from omegaconf import OmegaConf
import streamlit as st
import os
from PIL import Image
import sys
import datetime
import requests
from dotenv import load_dotenv
from typing import Tuple
from bs4 import BeautifulSoup
from pydantic import Field, BaseModel
from vectara_agent.agent import Agent, AgentStatusType
from vectara_agent.tools import ToolsFactory
initial_prompt = "How can I help you today?"
load_dotenv(override=True)
get_headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:98.0) Gecko/20100101 Firefox/98.0",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5",
"Accept-Encoding": "gzip, deflate",
"Connection": "keep-alive",
}
def create_tools(cfg):
class QueryHackerNews(BaseModel):
query: str = Field(..., description="The user query.")
tools_factory = ToolsFactory(vectara_api_key=cfg.api_key,
vectara_customer_id=cfg.customer_id,
vectara_corpus_id=cfg.corpus_id)
ask_hackernews_semantic = tools_factory.create_rag_tool(
tool_name = "ask_hackernews_semantic",
tool_description = """
Responds to query based on information in hacker news from the last 6 months.
Performs a semantic search to find relevant information.
Use this tool to perform pure semantic search.
""",
tool_args_schema = QueryHackerNews,
reranker = "multilingual_reranker_v1", rerank_k = 100,
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.0,
summary_num_results = 10,
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
include_citations = True,
)
ask_hackernews_hybrid = tools_factory.create_rag_tool(
tool_name = "ask_hackernews_keyword",
tool_description = """
Responds to query based on information in hacker news from the last 6 months
performs a hybrid search (both semantic and keyword) to find relevant information.
Use this tool when some amount of keyword search is expected to work better than semantic search,
For example, when you are looking for specific keywords or use rare words in the query.
""",
tool_args_schema = QueryHackerNews,
reranker = "multilingual_reranker_v1", rerank_k = 100,
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.1,
summary_num_results = 10,
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
include_citations = True,
)
def get_top_stories(
n_stories: int = Field(default=10, description="The number of top stories to return.")
) -> list[str]:
"""
Get the top stories from hacker news.
Returns a list of story IDS for the top stories right now
"""
db_url = 'https://hacker-news.firebaseio.com/v0/'
top_stories = requests.get(f"{db_url}topstories.json").json()
return top_stories[:n_stories]
def get_show_stories(
n_stories: int = Field(default=10, description="The number of top SHOW HN stories to return.")
) -> list[str]:
"""
Get the top SHOW HN stories from hacker news.
Returns a list of story IDS for the top SHOW HN stories right now
"""
db_url = 'https://hacker-news.firebaseio.com/v0/'
top_stories = requests.get(f"{db_url}showstories.json").json()
return top_stories[:n_stories]
def get_ask_stories(
n_stories: int = Field(default=10, description="The number of top ASK HN stories to return.")
) -> list[str]:
"""
Get the top ASK HN stories from hacker news.
Returns a list of story IDS for the top ASK HN stories right now
"""
db_url = 'https://hacker-news.firebaseio.com/v0/'
top_stories = requests.get(f"{db_url}askstories.json").json()
return top_stories[:n_stories]
def get_story_details(
story_id: str = Field(..., description="The story ID.")
) -> Tuple[str, str]:
"""
Get the title of a story from hacker news.
Returns:
- The title of the story (str)
- The main URL of the story (str)
- The external link pointed to in the story (str)
"""
db_url = 'https://hacker-news.firebaseio.com/v0/'
story = requests.get(f"{db_url}item/{story_id}.json").json()
story_url = f'https://news.ycombinator.com/item?id={story_id}'
return story['title'], story_url, story['url'],
def get_story_text(
story_id: str = Field(..., description="The story ID.")
) -> str:
"""
Get the text of the story from hacker news (original text + all comments)
Returns the extracted text of the story as a string.
"""
url = f'https://news.ycombinator.com/item?id={story_id}'
html = requests.get(url, headers=get_headers).text
soup = BeautifulSoup(html, 'html5lib')
for element in soup.find_all(['script', 'style']):
element.decompose()
text = soup.get_text(" ", strip=True).replace('\n', ' ')
return text
return (
tools_factory.get_tools(
[
get_top_stories,
get_show_stories,
get_ask_stories,
get_story_details,
get_story_text,
]
) +
tools_factory.standard_tools() +
tools_factory.guardrail_tools() +
[ask_hackernews_semantic, ask_hackernews_hybrid]
)
def initialize_agent(_cfg):
date = datetime.datetime.now().strftime("%Y-%m-%d")
bot_instructions = f"""
- You are a helpful assistant, answering user questions about content from hacker news.
- Today's date is {date}.
- Never discuss politics, and always respond politely.
- Use tools when available instead of depending on your own knowledge.
- If a tool provides citations, you can include them in your response to provide more context.
- If a tool cannot respond properly, retry with a rephrased question or ask the user for more information.
- Be very careful not to report results you are not confident about.
"""
def update_func(status_type: AgentStatusType, msg: str):
output = f"{status_type.value} - {msg}"
st.session_state.log_messages.append(output)
agent = Agent(
tools=create_tools(_cfg),
topic="hacker news",
custom_instructions=bot_instructions,
update_func=update_func
)
return agent
def launch_bot():
def reset():
cfg = st.session_state.cfg
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "🦖"}]
st.session_state.thinking_message = "Agent at work..."
st.session_state.agent = initialize_agent(cfg)
st.session_state.log_messages = []
st.session_state.show_logs = False
st.set_page_config(page_title="Hacker News Bot", layout="wide")
if 'cfg' not in st.session_state:
cfg = OmegaConf.create({
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
'api_key': str(os.environ['VECTARA_API_KEY']),
})
st.session_state.cfg = cfg
reset()
cfg = st.session_state.cfg
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=250)
st.markdown("## Welcome to the hacker news assistant demo.\n\n\n")
st.markdown("\n\n")
bc1, bc2 = st.columns([1, 1])
with bc1:
if st.button('Start Over'):
reset()
with bc2:
if st.button('Show Logs'):
st.session_state.show_logs = not st.session_state.show_logs
st.markdown("---")
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n\n"
"It demonstrates the use of Agentic RAG functionality with Vectara"
)
st.markdown("---")
if "messages" not in st.session_state.keys():
reset()
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message["avatar"]):
st.write(message["content"])
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": '🧑💻'})
with st.chat_message("user", avatar='🧑💻'):
print(f"Starting new question: {prompt}\n")
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant", avatar='🤖'):
with st.spinner(st.session_state.thinking_message):
res = st.session_state.agent.chat(prompt)
res = res.replace('$', '\\$') # escape dollar sign for markdown
message = {"role": "assistant", "content": res, "avatar": '🤖'}
st.session_state.messages.append(message)
st.rerun()
# Display log messages in an expander
if st.session_state.show_logs:
with st.expander("Agent Log Messages", expanded=True):
for msg in st.session_state.log_messages:
st.write(msg)
if st.button('Close Logs'):
st.session_state.show_logs = False
st.rerun()
sys.stdout.flush()
if __name__ == "__main__":
launch_bot()
|