File size: 9,518 Bytes
b5e0c7e
 
 
 
 
 
 
dea99b8
25b67f4
 
 
b5e0c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece9872
 
b5e0c7e
 
 
 
25b67f4
 
b5e0c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b67f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2b247
72e1546
b5e0c7e
 
 
 
 
 
5b2b247
 
b5e0c7e
 
7fba95a
6960aa1
72e1546
b5e0c7e
5b2b247
7fba95a
72e1546
 
 
b5e0c7e
 
 
 
 
 
 
25b67f4
b5e0c7e
 
 
 
a441318
5b2b247
b5e0c7e
 
91ec79e
dea99b8
 
 
 
 
 
 
dee34c5
9f650ed
91ec79e
 
1fa6aee
91ec79e
 
 
 
25b67f4
91ec79e
 
 
 
 
 
 
 
 
 
b5e0c7e
 
 
 
 
91ec79e
25b67f4
 
b5e0c7e
91ec79e
b5e0c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dea99b8
b5e0c7e
 
 
25b67f4
 
 
 
 
 
 
b5e0c7e
 
 
 
 
25b67f4
b5e0c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72b3bfc
b5e0c7e
 
0ea5146
b5e0c7e
25b67f4
 
 
 
 
 
 
 
 
b5e0c7e
 
 
91ec79e
b5e0c7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

from omegaconf import OmegaConf
import streamlit as st
import os
from PIL import Image
import re
import sys
import datetime
import pandas as pd
import requests
from dotenv import load_dotenv

from pydantic import Field, BaseModel
from vectara_agent.agent import Agent, AgentType, AgentStatusType
from vectara_agent.tools import ToolsFactory


tickers = {
    "AAPL": "Apple Computer", 
    "GOOG": "Google", 
    "AMZN": "Amazon",
    "SNOW": "Snowflake",
    "TEAM": "Atlassian",
    "TSLA": "Tesla",
    "NVDA": "Nvidia",
    "MSFT": "Microsoft",
    "AMD": "Advanced Micro Devices",
    "INTC": "Intel",
    "NFLX": "Netflix",
}
years = [2020, 2021, 2022, 2023, 2024]
initial_prompt = "How can I help you today?"

load_dotenv()

def create_tools(cfg):    

    def get_company_info() -> list[str]:
        """
        Returns a dictionary of companies you can query about their financial reports.
        The output is a dictionary of valid ticker symbols mapped to company names.
        You can use this to identify the companies you can query about, and their ticker information.
        """
        return tickers

    def get_valid_years() -> list[str]:
        """
        Returns a list of the years for which financial reports are available.
        """
        return years
    
    # Tool to get the income statement for a given company and year using the FMP API
    def get_income_statement(
        ticker=Field(description="the ticker symbol of the company."),
        year=Field(description="the year for which to get the income statement."),
    ) -> str:
        """
        Get the income statement for a given company and year using the FMP (https://financialmodelingprep.com) API.
        Returns a dictionary with the income statement data.
        """
        fmp_api_key = os.environ.get("FMP_API_KEY", None)
        if fmp_api_key is None:
            return "FMP_API_KEY environment variable not set. This tool does not work."
        url = f"https://financialmodelingprep.com/api/v3/income-statement/{ticker}?apikey={fmp_api_key}"
        response = requests.get(url)
        if response.status_code == 200:
            data = response.json()
            income_statement = pd.DataFrame(data)
            income_statement["date"] = pd.to_datetime(income_statement["date"])
            income_statement_specific_year = income_statement[
                income_statement["date"].dt.year == year
            ]
            values_dict = income_statement_specific_year.to_dict(orient="records")[0]
            return f"Financial results: {', '.join([f'{key}: {value}' for key, value in values_dict.items() if key not in ['date', 'cik', 'link', 'finalLink']])}"
        else:
            return "FMP API returned error. This tool does not work."

    class QueryTranscriptsArgs(BaseModel):
        query: str = Field(..., description="The user query.")
        year: int = Field(..., description=f"The year. an integer between {min(years)} and {max(years)}.")
        ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.")

    tools_factory = ToolsFactory(vectara_api_key=cfg.api_key, 
                                 vectara_customer_id=cfg.customer_id, 
                                 vectara_corpus_id=cfg.corpus_id)
    ask_transcripts = tools_factory.create_rag_tool(
        tool_name = "ask_transcripts",
        tool_description = """
        Given a company name and year, 
        returns a response (str) to a user question about a company, based on analyst call transcripts about the company's financial reports for that year.
        You can ask this tool any question about the compaany including risks, opportunities, financial performance, competitors and more.
        make sure to provide the a valid company ticker and year.
        """,
        tool_args_schema = QueryTranscriptsArgs,
        tool_filter_template = "doc.year = {year} and doc.ticker = '{ticker}'",
        reranker = "multilingual_reranker_v1", rerank_k = 100, 
        n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.01,
        summary_num_results = 10,
        vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
    )

    return (tools_factory.get_tools(
                [
                    get_company_info, 
                    get_valid_years,
                    get_income_statement,
                ]
            ) +
            tools_factory.standard_tools() + 
            tools_factory.financial_tools() + 
            tools_factory.guardrail_tools() +
            [ask_transcripts]
    )

def initialize_agent(agent_type: AgentType, _cfg):
    date = datetime.datetime.now().strftime("%Y-%m-%d")
    financial_bot_instructions = f"""
    - You are a helpful financial assistant, with expertise in finanal reporting, in conversation with a user. 
    - Today's date is {date}.
    - Report in a concise and clear manner, and provide the most relevant information to the user.
    - Respond in a concise format by using appropriate units of measure (e.g., K for thousands, M for millions, B for billions). 
    - Use tools when available instead of depending on your own knowledge.
    - If a tool cannot respond properly, retry with a rephrased question or ask the user for more information.
    - When querying a tool for a numeric value or KPI, use a concise and non-ambiguous description of what you are looking for. 
    - If you calculate a metric, make sure you have all the necessary information to complete the calculation. Don't guess.
    - Be very careful not to report results you are not confident about.
    - Always use any guardrails tools to ensure your responses are polite and do not discuss politices.
    """

    def update_func(status_type: AgentStatusType, msg: str):
        output = f"{status_type.value} - {msg}"
        st.session_state.log_messages.append(output)

    agent = Agent(
        agent_type=agent_type,
        tools=create_tools(_cfg),
        topic="10-K annual financial reports",
        custom_instructions=financial_bot_instructions,
        update_func=update_func
    )
    return agent

def launch_bot(agent_type: AgentType):
    def reset():
        cfg = st.session_state.cfg
        st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "🦖"}]
        st.session_state.thinking_message = "Agent at work..."
        st.session_state.agent = initialize_agent(agent_type, cfg)
        st.session_state.log_messages = []
        st.session_state.show_logs = False

    st.set_page_config(page_title="Financial Assistant", layout="wide")
    if 'cfg' not in st.session_state:
        cfg = OmegaConf.create({
            'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
            'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
            'api_key': str(os.environ['VECTARA_API_KEY']),
        })
        st.session_state.cfg = cfg
        reset()
    cfg = st.session_state.cfg

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.image(image, width=250)
        st.markdown("## Welcome to the financial assistant demo.\n\n\n")
        companies = ", ".join(tickers.values())
        st.markdown(
            f"This assistant can help you with any questions about the financials of several companies:\n\n **{companies}**.\n"
        )

        st.markdown("\n\n")
        bc1, bc2 = st.columns([1, 1])
        with bc1:
            if st.button('Start Over'):
                reset()
        with bc2:
            if st.button('Show Logs'):
                st.session_state.show_logs = not st.session_state.show_logs

        st.markdown("---")
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n\n"
            "It demonstrates the use of Agentic RAG functionality with Vectara"
        )
        st.markdown("---")


    if "messages" not in st.session_state.keys():
        reset()

    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"], avatar=message["avatar"]):
            st.write(message["content"])

    # User-provided prompt
    if prompt := st.chat_input():
        st.session_state.messages.append({"role": "user", "content": prompt, "avatar": '🧑‍💻'})
        with st.chat_message("user", avatar='🧑‍💻'):
            print(f"Starting new question: {prompt}\n")
            st.write(prompt)
    
    # Generate a new response if last message is not from assistant
    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant", avatar='🤖'):
            with st.spinner(st.session_state.thinking_message):
                res = st.session_state.agent.chat(prompt)
                cleaned = re.sub(r'\[\d+\]', '', res).replace('$', '\\$')
            message = {"role": "assistant", "content": cleaned, "avatar": '🤖'}
            st.session_state.messages.append(message)
            st.rerun()

    # Display log messages in an expander
    if st.session_state.show_logs:
        with st.expander("Agent Log Messages", expanded=True):
            for msg in st.session_state.log_messages:
                st.write(msg)
            if st.button('Close Logs'):
                st.session_state.show_logs = False
                st.rerun()

    sys.stdout.flush()

if __name__ == "__main__":
    launch_bot(agent_type=AgentType.OPENAI)