ofermend's picture
initial
b5e0c7e
raw
history blame
7.45 kB
from omegaconf import OmegaConf
import streamlit as st
import os
from PIL import Image
import re
import sys
from pydantic import Field, BaseModel
from vectara_agent.agent import Agent, AgentType, AgentStatusType
from vectara_agent.tools import ToolsFactory
tickers = {
"AAPL": "Apple Computer",
"GOOG": "Google",
"AMZN": "Amazon",
"SNOW": "Snowflake",
"TEAM": "Atlassian",
"TSLA": "Tesla",
"NVDA": "Nvidia",
"MSFT": "Microsoft",
"AMD": "Advanced Micro Devices",
}
years = [2020, 2021, 2022, 2023, 2024]
initial_prompt = "How can I help you today?"
def create_tools(cfg):
def get_company_info() -> list[str]:
"""
Returns a dictionary of companies you can query about their financial reports.
The output is a dictionary of valid ticker symbols mapped to company names.
You can use this to identify the companies you can query about, and their ticker information.
"""
return tickers
def get_valid_years() -> list[str]:
"""
Returns a list of the years for which financial reports are available.
"""
return years
class QueryFinancialReportsArgs(BaseModel):
query: str = Field(..., description="The user query. Must be a question about the company's financials, and should not include the company name, ticker or year.")
year: int = Field(..., description=f"The year. an integer between {min(years)} and {max(years)}.")
ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.")
tools_factory = ToolsFactory(vectara_api_key=cfg.api_key,
vectara_customer_id=cfg.customer_id,
vectara_corpus_id=cfg.corpus_id)
query_financial_reports = tools_factory.create_rag_tool(
tool_name = "query_financial_reports",
tool_description = """
Given a company name and year,
returns a response (str) to a user query about the company's financials for that year.
When using this tool, make sure to provide the a valid company ticker and a year.
Use this tool to get financial information one metric at a time.
""",
tool_args_schema = QueryFinancialReportsArgs,
tool_filter_template = "doc.year = {year} and doc.ticker = '{ticker}'",
reranker = "slingshot", rerank_k = 100,
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.0,
summary_num_results = 15,
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
)
return (tools_factory.get_tools(
[
get_company_info,
get_valid_years,
]
) +
tools_factory.standard_tools() +
tools_factory.financial_tools() +
[query_financial_reports]
)
def launch_bot(agent_type: AgentType):
def reset():
cfg = st.session_state.cfg
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "πŸ¦–"}]
st.session_state.thinking_message = "Agent at work..."
# Create the agent
print("Creating agent...")
def update_func(status_type: AgentStatusType, msg: str):
output = f"{status_type.value} - {msg}"
st.session_state.thinking_placeholder.text(output)
financial_bot_instructions = """
- You are a helpful financial assistant in conversation with a user. Use your financial expertise when crafting a query to the tool, to ensure you get the most accurate information.
- You can answer questions, provide insights, or summarize any information from financial reports.
- A user may refer to a company's ticker instead of its full name - consider those the same when a user is asking about a company.
- When calculating a financial metric, make sure you have all the information from tools to complete the calculation.
- In many cases you may need to query tools on each sub-metric separately before computing the final metric.
- When using a tool to obtain financial data, consider the fact that information for a certain year may be reported in the the following year's report.
- Report financial data in a consistent manner. For example if you report revenue in thousands, always report revenue in thousands.
"""
st.session_state.agent = Agent(
agent_type = agent_type,
tools = create_tools(cfg),
topic = "10-K financial reports",
custom_instructions = financial_bot_instructions,
update_func = update_func
)
if 'cfg' not in st.session_state:
cfg = OmegaConf.create({
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
'api_key': str(os.environ['VECTARA_API_KEY']),
})
st.session_state.cfg = cfg
reset()
cfg = st.session_state.cfg
st.set_page_config(page_title="Financial Assistant", layout="wide")
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=250)
st.markdown("## Welcome to the financial assistant demo.\n\n\n")
companies = ", ".join(tickers.values())
st.markdown(
f"This assistant can help you with any questions about the financials of the following companies:\n\n **{companies}**.\n\n"
"You can ask questions, analyze data, provide insights, or summarize any information from financial reports."
)
st.markdown("\n\n")
if st.button('Start Over'):
reset()
st.markdown("---")
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n\n"
"It demonstrates the use of Agentic Chat functionality with Vectara"
)
st.markdown("---")
if "messages" not in st.session_state.keys():
reset()
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message["avatar"]):
st.write(message["content"])
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'πŸ§‘β€πŸ’»'})
with st.chat_message("user", avatar='πŸ§‘β€πŸ’»'):
print(f"Starting new question: {prompt}\n")
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant", avatar='πŸ€–'):
with st.spinner(st.session_state.thinking_message):
st.session_state.thinking_placeholder = st.empty()
res = st.session_state.agent.chat(prompt)
cleaned = re.sub(r'\[\d+\]', '', res.response).replace('$', '\\$')
st.write(cleaned)
message = {"role": "assistant", "content": cleaned, "avatar": 'πŸ€–'}
st.session_state.messages.append(message)
st.session_state.thinking_placeholder.empty()
sys.stdout.flush()
if __name__ == "__main__":
print("Starting up...")
launch_bot(agent_type = AgentType.REACT)