ofermend's picture
refactor streamlit app
91ec79e
raw
history blame
7.34 kB
from omegaconf import OmegaConf
import streamlit as st
import os
from PIL import Image
import re
import sys
from pydantic import Field, BaseModel
from vectara_agent.agent import Agent, AgentType, AgentStatusType
from vectara_agent.tools import ToolsFactory
tickers = {
"AAPL": "Apple Computer",
"GOOG": "Google",
"AMZN": "Amazon",
"SNOW": "Snowflake",
"TEAM": "Atlassian",
"TSLA": "Tesla",
"NVDA": "Nvidia",
"MSFT": "Microsoft",
"AMD": "Advanced Micro Devices",
"INTC": "Intel",
"NFLX": "Netflix",
}
years = [2020, 2021, 2022, 2023, 2024]
initial_prompt = "How can I help you today?"
def create_tools(cfg):
def get_company_info() -> list[str]:
"""
Returns a dictionary of companies you can query about their financial reports.
The output is a dictionary of valid ticker symbols mapped to company names.
You can use this to identify the companies you can query about, and their ticker information.
"""
return tickers
def get_valid_years() -> list[str]:
"""
Returns a list of the years for which financial reports are available.
"""
return years
class QueryFinancialReportsArgs(BaseModel):
query: str = Field(..., description="The user query.")
year: int = Field(..., description=f"The year. an integer between {min(years)} and {max(years)}.")
ticker: str = Field(..., description=f"The company ticker. Must be a valid ticket symbol from the list {tickers.keys()}.")
tools_factory = ToolsFactory(vectara_api_key=cfg.api_key,
vectara_customer_id=cfg.customer_id,
vectara_corpus_id=cfg.corpus_id)
query_financial_reports = tools_factory.create_rag_tool(
tool_name = "query_financial_reports",
tool_description = """
Given a company name and year,
returns a response (str) to a user query about the company's financial reports for that year.
make sure to provide the a valid company ticker and year.
""",
tool_args_schema = QueryFinancialReportsArgs,
tool_filter_template = "doc.year = {year} and doc.ticker = '{ticker}'",
reranker = "multilingual_reranker_v1", rerank_k = 100,
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.01,
summary_num_results = 10,
vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
)
return (tools_factory.get_tools(
[
get_company_info,
get_valid_years,
]
) +
tools_factory.standard_tools() +
tools_factory.financial_tools() +
[query_financial_reports]
)
@st.cache_resource
def initialize_agent(agent_type: AgentType, _cfg):
financial_bot_instructions = """
- You are a helpful financial assistant in conversation with a user.
- Use your financial expertise when crafting a query to the tool, to ensure you get the most accurate responses.
- A user may refer to a company's ticker instead of its full name - consider those the same when a user is asking about a company.
- When using a query tool for a metric, make sure to provide the correct ticker and year and concise definition of the metric to avoid ambiguity.
- Use tools when available instead of depending on your own knowledge, and consider the field descriptions carefully.
- If you calculate a metric, make sure you have all the necessary information to complete the calculation. Don't guess.
- Report financial data in a consistent manner. For example if you report revenue in thousands, always report revenue in thousands.
- Be very careful not to report results you are not confident about.
- Report results in the most relevant multiple. For example, revenues in millions, not thousands.
"""
def update_func(status_type: AgentStatusType, msg: str):
output = f"{status_type.value} - {msg}"
st.session_state.thinking_placeholder.text(output)
agent = Agent(
agent_type=agent_type,
tools=create_tools(_cfg),
topic="10-K annual financial reports",
custom_instructions=financial_bot_instructions,
update_func=update_func
)
return agent
def launch_bot(agent_type: AgentType):
def reset():
cfg = st.session_state.cfg
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "πŸ¦–"}]
st.session_state.thinking_message = "Agent at work..."
st.session_state.agent = initialize_agent(agent_type, cfg)
st.set_page_config(page_title="Financial Assistant", layout="wide")
if 'cfg' not in st.session_state:
cfg = OmegaConf.create({
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
'api_key': str(os.environ['VECTARA_API_KEY']),
})
st.session_state.cfg = cfg
reset()
cfg = st.session_state.cfg
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=250)
st.markdown("## Welcome to the financial assistant demo.\n\n\n")
companies = ", ".join(tickers.values())
st.markdown(
f"This assistant can help you with any questions about the financials of the following companies:\n\n **{companies}**.\n\n"
"You can ask questions, analyze data, provide insights, or summarize any information from financial reports."
)
st.markdown("\n\n")
if st.button('Start Over'):
reset()
st.markdown("---")
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n\n"
"It demonstrates the use of Agentic Chat functionality with Vectara"
)
st.markdown("---")
if "messages" not in st.session_state.keys():
reset()
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message["avatar"]):
st.write(message["content"])
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'πŸ§‘β€πŸ’»'})
with st.chat_message("user", avatar='πŸ§‘β€πŸ’»'):
print(f"Starting new question: {prompt}\n")
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant", avatar='πŸ€–'):
with st.spinner(st.session_state.thinking_message):
st.session_state.thinking_placeholder = st.empty()
res = st.session_state.agent.chat(prompt)
cleaned = re.sub(r'\[\d+\]', '', res).replace('$', '\\$')
message = {"role": "assistant", "content": cleaned, "avatar": 'πŸ€–'}
st.session_state.messages.append(message)
st.session_state.thinking_placeholder.empty()
st.rerun()
sys.stdout.flush()
if __name__ == "__main__":
launch_bot(agent_type=AgentType.OPENAI)