Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Minseok Bae
Integrated backend pipelines - error occurs during model submission. (Debugging needed).
58b9de9
import json | |
import os | |
import logging | |
from datetime import datetime | |
import src.envs as envs | |
from src.backend.manage_requests import EvalRequest | |
from src.backend.evaluate_model import Evaluator | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s') | |
logging.getLogger("openai").setLevel(logging.WARNING) | |
def run_evaluation(eval_request: EvalRequest, batch_size, device, | |
local_dir: str, results_repo: str, no_cache=True, limit=None): | |
""" | |
Run the evaluation for a given model and upload the results. | |
Args: | |
eval_request (EvalRequest): The evaluation request object containing model details. | |
num_fewshot (int): Number of few-shot examples. | |
batch_size (int): Batch size for processing. | |
device (str): The device to run the evaluation on. | |
local_dir (str): Local directory path for saving results. | |
results_repo (str): Repository ID where results will be uploaded. | |
no_cache (bool): Whether to disable caching. | |
limit (int, optional): Limit on the number of items to process. Use with caution. | |
Returns: | |
dict: A dictionary containing evaluation results. | |
""" | |
if limit: | |
logging.warning("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.") | |
try: | |
evaluator = Evaluator(eval_request.model, eval_request.revision, eval_request.precision, | |
batch_size, device, no_cache, limit, write_out=True, | |
output_base_path='logs') | |
results = evaluator.evaluate() | |
except Exception as e: | |
logging.error(f"Error during evaluation: {e}") | |
raise | |
dumped = json.dumps(results, indent=2) | |
logging.info(dumped) | |
output_path = os.path.join(local_dir, *eval_request.model.split("/"), | |
f"results_{datetime.now()}.json") | |
os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
with open(output_path, "w") as f: | |
f.write(dumped) | |
envs.API.upload_file( | |
path_or_fileobj=output_path, | |
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json", | |
repo_id=results_repo, | |
repo_type="dataset", | |
) | |
return results | |