File size: 3,596 Bytes
7f46a81
 
 
 
 
 
 
46f57c1
 
 
 
adf3dc3
7f46a81
1dac99b
 
 
92a65c1
 
 
 
673067b
0aa3b05
 
 
 
 
 
 
 
4b2fddf
147129f
1388aa0
0aa3b05
 
1388aa0
673067b
0aa3b05
1dac99b
7f46a81
 
 
 
 
 
1dac99b
7f46a81
 
 
 
 
 
347c81e
7f46a81
 
 
 
d26ed68
7f46a81
 
d26ed68
 
1dac99b
d26ed68
 
107582d
d26ed68
 
7f46a81
1dac99b
 
 
 
 
 
 
 
 
92a65c1
 
 
 
 
 
91ebd43
 
 
1dac99b
7f46a81
92a65c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from omegaconf import OmegaConf
from query import VectaraQuery
import os

import streamlit as st
from PIL import Image

def isTrue(x) -> bool:
    if isinstance(x, bool):
        return s
    return x.strip().lower() == 'true'

def launch_bot():
    def generate_response(question):
        response = vq.submit_query(question)
        return response
    
    def generate_streaming_response(question):
        response = vq.submit_query_streaming(question)
        return response

    if 'cfg' not in st.session_state:
        corpus_ids = str(os.environ['corpus_ids']).split(',')
        cfg = OmegaConf.create({
            'customer_id': str(os.environ['customer_id']),
            'corpus_ids': corpus_ids,
            'api_key': str(os.environ['api_key']),
            'title': os.environ['title'],
            'description': os.environ['description'],
            'source_data_desc': os.environ['source_data_desc'],
            'streaming': isTrue(os.environ.get('streaming', False)),
            'prompt_name': os.environ.get('prompt_name', None)
        })
        st.session_state.cfg = cfg
        st.session_state.vq = VectaraQuery(cfg.api_key, cfg.customer_id, cfg.corpus_ids, cfg.prompt_name)

    cfg = st.session_state.cfg
    vq = st.session_state.vq
    st.set_page_config(page_title=cfg.title, layout="wide")

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.markdown(f"## Welcome to {cfg.title}\n\n"
                    f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n\n")

        st.markdown("---")
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n"
            "Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
            "This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
        )
        st.markdown("---")
        st.image(image, width=250)

    st.markdown(f"<center> <h2> Vectara chat demo: {cfg.title} </h2> </center>", unsafe_allow_html=True)
    st.markdown(f"<center> <h4> {cfg.description} <h4> </center>", unsafe_allow_html=True)

    if "messages" not in st.session_state.keys():
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]

    # Display chat messages
    for message in st.session_state.messages:
        print(f"DEBUG msg = {message}")
        with st.chat_message(message["role"]):
            st.write(message["content"])

    # User-provided prompt
    if prompt := st.chat_input():
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.write(prompt)
    
    # Generate a new response if last message is not from assistant
    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant"):
            if cfg.streaming:
                stream = generate_streaming_response(prompt) 
                response = st.write_stream(stream) 
            else:
                with st.spinner("Thinking..."):
                    response = generate_response(prompt)
                    st.write(response)
            message = {"role": "assistant", "content": response}
            st.session_state.messages.append(message)
    
if __name__ == "__main__":
    launch_bot()