File size: 4,926 Bytes
7f46a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26592e
7f46a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6541511
7f46a81
 
f26592e
 
7f46a81
 
 
6541511
 
b4ea488
6541511
b4ea488
6541511
5fc81fd
7f46a81
 
 
b4ea488
a346ef2
f26592e
 
 
5cebf82
 
7f46a81
 
b4ea488
7f46a81
 
 
 
 
 
 
 
 
7ff5239
6541511
7f46a81
6541511
7f46a81
39e2176
 
 
 
 
 
 
 
 
 
ee0fd94
5cebf82
7f46a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26592e
7f46a81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import requests
import json
import re
from urllib.parse import quote

def extract_between_tags(text, start_tag, end_tag):
    start_index = text.find(start_tag)
    end_index = text.find(end_tag, start_index)
    return text[start_index+len(start_tag):end_index-len(end_tag)]

class VectaraQuery():
    def __init__(self, api_key: str, customer_id: int, corpus_ids: list):
        self.customer_id = customer_id
        self.corpus_ids = corpus_ids
        self.api_key = api_key
        self.conv_id = None

    def submit_query(self, query_str: str):
        corpora_key_list = [{
                'customer_id': str(self.customer_id), 'corpus_id': str(corpus_id), 'lexical_interpolation_config': {'lambda': 0.025}
            } for corpus_id in self.corpus_ids
        ]

        endpoint = f"https://api.vectara.io/v1/query"
        start_tag = "%START_SNIPPET%"
        end_tag = "%END_SNIPPET%"
        headers = {
            "Content-Type": "application/json",
            "Accept": "application/json",
            "customer-id": str(self.customer_id),
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }
        body = {
            'query': [
                { 
                    'query': query_str,
                    'start': 0,
                    'numResults': 50,
                    'corpusKey': corpora_key_list,
                    'context_config': {
                        'sentences_before': 2,
                        'sentences_after': 2,
                        'start_tag': start_tag,
                        'end_tag': end_tag,
                    },
                    'rerankingConfig':
                    {
                        'rerankerId': 272725718,
                        'mmrConfig': {
                            'diversityBias': 0.3
                        }
                    },
                    'summary': [
                        {
                            'responseLang': 'eng',
                            'maxSummarizedResults': 5,
                            'summarizerPromptName': 'vectara-experimental-summary-ext-2023-12-11-large',
                            'chat': {
                                'store': True,
                                'conversationId': self.conv_id
                            },
                            'debug': True,
                        }
                    ]
                } 
            ]
        }
        
        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=headers)    
        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            return "Sorry, something went wrong in my brain. Please try again later."

        res = response.json()

        top_k = 10
        summary = res['responseSet'][0]['summary'][0]['text']
        responses = res['responseSet'][0]['response'][:top_k]
        docs = res['responseSet'][0]['document']
        chat = res['responseSet'][0]['summary'][0]['chat']

        if chat['status'] != None:
            st_code = chat['status']
            print(f"Chat query failed with code {st_code}")
            if st_code == 'RESOURCE_EXHAUSTED':
                self.conv_id = None
                return 'Sorry, Vectara chat turns exceeds plan limit.'
            return 'Sorry, something went wrong in my brain. Please try again later.'
        
        self.conv_id = res['responseSet'][0]['summary'][0]['chat']['conversationId']
        
        pattern = r'\[\d{1,2}\]'
        matches = [match.span() for match in re.finditer(pattern, summary)]

        # figure out unique list of references
        refs = []
        for match in matches:
            start, end = match
            response_num = int(summary[start+1:end-1])
            doc_num = responses[response_num-1]['documentIndex']
            metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
            text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
            url = f"{metadata['url']}#:~:text={quote(text)}"
            if url not in refs:
                refs.append(url)

        # replace references with markdown links
        refs_dict = {url:(inx+1) for inx,url in enumerate(refs)}
        for match in reversed(matches):
            start, end = match
            response_num = int(summary[start+1:end-1])
            doc_num = responses[response_num-1]['documentIndex']
            metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
            text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
            url = f"{metadata['url']}#:~:text={quote(text)}"
            citation_inx = refs_dict[url]
            summary = summary[:start] + f'[\[{citation_inx}\]]({url})' + summary[end:]

        return summary