File size: 4,264 Bytes
7f46a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26592e
7f46a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f4f2d
7f46a81
 
f26592e
 
7f46a81
 
 
 
 
 
93f4f2d
 
f26592e
 
 
5cebf82
 
7f46a81
 
 
 
 
 
 
 
 
 
 
 
5cebf82
 
 
7f46a81
 
 
ee0fd94
5cebf82
 
 
7f46a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26592e
7f46a81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import requests
import json
import re
from urllib.parse import quote

def extract_between_tags(text, start_tag, end_tag):
    start_index = text.find(start_tag)
    end_index = text.find(end_tag, start_index)
    return text[start_index+len(start_tag):end_index-len(end_tag)]

class VectaraQuery():
    def __init__(self, api_key: str, customer_id: int, corpus_ids: list):
        self.customer_id = customer_id
        self.corpus_ids = corpus_ids
        self.api_key = api_key
        self.conv_id = None

    def submit_query(self, query_str: str):
        corpora_key_list = [{
                'customer_id': str(self.customer_id), 'corpus_id': str(corpus_id), 'lexical_interpolation_config': {'lambda': 0.025}
            } for corpus_id in self.corpus_ids
        ]

        endpoint = f"https://api.vectara.io/v1/query"
        start_tag = "%START_SNIPPET%"
        end_tag = "%END_SNIPPET%"
        headers = {
            "Content-Type": "application/json",
            "Accept": "application/json",
            "customer-id": str(self.customer_id),
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }
        body = {
            'query': [
                { 
                    'query': query_str,
                    'start': 0,
                    'numResults': 10,
                    'corpusKey': corpora_key_list,
                    'context_config': {
                        'sentences_before': 2,
                        'sentences_after': 2,
                        'start_tag': start_tag,
                        'end_tag': end_tag,
                    },
                    'summary': [
                        {
                            'responseLang': 'eng',
                            'maxSummarizedResults': 7,
                            'summarizerPromptName': 'vectara-experimental-summary-ext-2023-10-23-med',
                            'chat': {
                                'store': True,
                                'conversationId': self.conv_id
                            },
                            'debug': True,
                        }
                    ]
                }
            ]
        }
        
        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=headers)    
        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            return "Sorry, something went wrong in my brain. Please try again later."

        res = response.json()
        print(body)
        print(res)
        
        summary = res['responseSet'][0]['summary'][0]['text']
        responses = res['responseSet'][0]['response']
        docs = res['responseSet'][0]['document']
        self.conv_id = res['responseSet'][0]['summary'][0]['chat']['conversationId']

        
        
        pattern = r'\[\d{1,2}\]'
        matches = [match.span() for match in re.finditer(pattern, summary)]

        # figure out unique list of references
        refs = []
        for match in matches:
            start, end = match
            response_num = int(summary[start+1:end-1])
            doc_num = responses[response_num-1]['documentIndex']
            metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
            text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
            url = f"{metadata['url']}#:~:text={quote(text)}"
            if url not in refs:
                refs.append(url)

        # replace references with markdown links
        refs_dict = {url:(inx+1) for inx,url in enumerate(refs)}
        for match in reversed(matches):
            start, end = match
            response_num = int(summary[start+1:end-1])
            doc_num = responses[response_num-1]['documentIndex']
            metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
            text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
            url = f"{metadata['url']}#:~:text={quote(text)}"
            citation_inx = refs_dict[url]
            summary = summary[:start] + f'[\[{citation_inx}\]]({url})' + summary[end:]

        return summary