Spaces:
Sleeping
Sleeping
File size: 8,539 Bytes
7f46a81 bbb0dfd 7f46a81 5befd28 bbb0dfd 5befd28 7f46a81 8a46321 bbb0dfd 8a46321 46f57c1 056c675 46f57c1 adf3dc3 7f46a81 1dac99b bbb0dfd 1dac99b 92a65c1 bbb0dfd 92a65c1 8a46321 5befd28 a236e2e 8a46321 0aa3b05 8a46321 0aa3b05 8a46321 0aa3b05 4b2fddf 147129f c8e5635 bbb0dfd 0aa3b05 72b8ff0 bbb0dfd a236e2e 8a46321 673067b 0aa3b05 1dac99b 7f46a81 8a46321 bbb0dfd 7f46a81 347c81e 7f46a81 8a46321 7f46a81 8a46321 7f46a81 d26ed68 8a46321 a236e2e 7f46a81 a236e2e 72b8ff0 1dac99b a236e2e 1dac99b 92a65c1 91ebd43 bbb0dfd a236e2e bbb0dfd 1dac99b 7f46a81 8a46321 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
from omegaconf import OmegaConf
from query import VectaraQuery
import os
import requests
import json
import uuid
import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback
from PIL import Image
max_examples = 6
languages = {'English': 'eng', 'Spanish': 'spa', 'French': 'frs', 'Chinese': 'zho', 'German': 'deu', 'Hindi': 'hin', 'Arabic': 'ara',
'Portuguese': 'por', 'Italian': 'ita', 'Japanese': 'jpn', 'Korean': 'kor', 'Russian': 'rus', 'Turkish': 'tur', 'Persian (Farsi)': 'fas',
'Vietnamese': 'vie', 'Thai': 'tha', 'Hebrew': 'heb', 'Dutch': 'nld', 'Indonesian': 'ind', 'Polish': 'pol', 'Ukrainian': 'ukr',
'Romanian': 'ron', 'Swedish': 'swe', 'Czech': 'ces', 'Greek': 'ell', 'Bengali': 'ben', 'Malay (or Malaysian)': 'msa', 'Urdu': 'urd'}
# Setup for HTTP API Calls to Amplitude Analytics
if 'device_id' not in st.session_state:
st.session_state.device_id = str(uuid.uuid4())
headers = {
'Content-Type': 'application/json',
'Accept': '*/*'
}
amp_api_key = os.getenv('AMPLITUDE_TOKEN')
def thumbs_feedback(feedback, **kwargs):
"""
Sends feedback to Amplitude Analytics
"""
data = {
"api_key": amp_api_key,
"events": [{
"device_id": st.session_state.device_id,
"event_type": "provided_feedback",
"event_properties": {
"Space Name": kwargs.get("title", "Unknown Space Name"),
"Demo Type": "chatbot",
"query": kwargs.get("prompt", "No user input"),
"response": kwargs.get("response", "No chat response"),
"feedback": feedback["score"],
"Response Language": st.session_state.language
}
}]
}
response = requests.post('https://api2.amplitude.com/2/httpapi', headers=headers, data=json.dumps(data))
if response.status_code != 200:
print(f"Request failed with status code {response.status_code}. Response Text: {response.text}")
st.session_state.feedback_key += 1
if "feedback_key" not in st.session_state:
st.session_state.feedback_key = 0
def isTrue(x) -> bool:
if isinstance(x, bool):
return x
return x.strip().lower() == 'true'
def launch_bot():
def generate_response(question):
response = vq.submit_query(question, languages[st.session_state.language])
return response
def generate_streaming_response(question):
response = vq.submit_query_streaming(question, languages[st.session_state.language])
return response
def show_example_questions():
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
if selected_example:
st.session_state.ex_prompt = selected_example
st.session_state.first_turn = False
return True
return False
if 'cfg' not in st.session_state:
corpus_keys = str(os.environ['corpus_keys']).split(',')
cfg = OmegaConf.create({
'corpus_keys': corpus_keys,
'api_key': str(os.environ['api_key']),
'title': os.environ['title'],
'source_data_desc': os.environ['source_data_desc'],
'streaming': isTrue(os.environ.get('streaming', False)),
'prompt_name': os.environ.get('prompt_name', None),
'examples': os.environ.get('examples', None),
'language': 'English'
})
st.session_state.cfg = cfg
st.session_state.ex_prompt = None
st.session_state.first_turn = True
st.session_state.language = cfg.language
example_messages = [example.strip() for example in cfg.examples.split(",")]
st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
cfg = st.session_state.cfg
vq = st.session_state.vq
st.set_page_config(page_title=cfg.title, layout="wide")
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=175)
st.markdown(f"## About\n\n"
f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n")
cfg.language = st.selectbox('Language:', languages.keys())
if st.session_state.language != cfg.language:
st.session_state.language = cfg.language
print(f"DEBUG: Language changed to {st.session_state.language}")
st.rerun()
st.markdown("---")
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n"
"Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
"This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
)
st.markdown("---")
st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True)
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
example_container = st.empty()
with example_container:
if show_example_questions():
example_container.empty()
st.rerun()
# select prompt from example question or user provided input
if st.session_state.ex_prompt:
prompt = st.session_state.ex_prompt
else:
prompt = st.chat_input()
if prompt:
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
st.session_state.ex_prompt = None
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
if cfg.streaming:
stream = generate_streaming_response(prompt)
response = st.write_stream(stream)
else:
with st.spinner("Thinking..."):
response = generate_response(prompt)
st.write(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)
# Send query and response to Amplitude Analytics
data = {
"api_key": amp_api_key,
"events": [{
"device_id": st.session_state.device_id,
"event_type": "submitted_query",
"event_properties": {
"Space Name": cfg["title"],
"Demo Type": "chatbot",
"query": st.session_state.messages[-2]["content"],
"response": st.session_state.messages[-1]["content"],
"Response Language": st.session_state.language
}
}]
}
response = requests.post('https://api2.amplitude.com/2/httpapi', headers=headers, data=json.dumps(data))
if response.status_code != 200:
print(f"Amplitude request failed with status code {response.status_code}. Response Text: {response.text}")
st.rerun()
if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How may I help you?"):
streamlit_feedback(feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
kwargs = {"prompt": st.session_state.messages[-2]["content"],
"response": st.session_state.messages[-1]["content"],
"title": cfg["title"]})
if __name__ == "__main__":
launch_bot() |