File size: 3,612 Bytes
94e735e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import streamlit as st
from streamlit_extras.switch_page_button import switch_page

st.title("DocOwl 1.5")

st.success("""[Original tweet](https://twitter.com/mervenoyann/status/1782421257591357824) (April 22, 2024)""", icon="ℹ️")
st.markdown(""" """)

st.markdown("""DocOwl 1.5 is the state-of-the-art document understanding model by Alibaba with Apache 2.0 license 😍📝  
Time to dive in and learn more 🧶 
""")
st.markdown(""" """)

st.image("pages/DocOwl_1.5/image_1.jpg", use_column_width=True)
st.markdown(""" """)

st.markdown("""This model consists of a ViT-based visual encoder part that takes in crops of image and the original image itself.  
Then the outputs of the encoder goes through a convolution based model, after that the outputs are merged with text and then fed to LLM. 
""")
st.markdown(""" """)

st.image("pages/DocOwl_1.5/image_2.jpeg", use_column_width=True)
st.markdown(""" """)

st.markdown("""
Initially, the authors only train the convolution based part (called H-Reducer) and vision encoder while keeping LLM frozen.  
Then for fine-tuning (on image captioning, VQA etc), they freeze vision encoder and train H-Reducer and LLM. 
""")
st.markdown(""" """)

st.image("pages/DocOwl_1.5/image_3.jpeg", use_column_width=True)
st.markdown(""" """)

st.markdown("""Also they use simple linear projection on text and documents. You can see below how they model the text prompts and outputs 🤓 
""")
st.markdown(""" """)

st.image("pages/DocOwl_1.5/image_4.jpeg", use_column_width=True)
st.markdown(""" """)

st.markdown("""They train the model various downstream tasks including:  
- document understanding (DUE benchmark and more)  
- table parsing (TURL, PubTabNet)  
- chart parsing (PlotQA and more)  
- image parsing (OCR-CC)  
- text localization (DocVQA and more) 
""")
st.markdown(""" """)

st.image("pages/DocOwl_1.5/image_5.jpeg", use_column_width=True)
st.markdown(""" """)

st.markdown("""
They contribute a new model called DocOwl 1.5-Chat by:  
1. creating a new document-chat dataset with questions from document VQA datasets  
2. feeding them to ChatGPT to get long answers  
3. fine-tune the base model with it (which IMO works very well!) 
""")
st.markdown(""" """)

st.image("pages/DocOwl_1.5/image_6.jpeg", use_column_width=True)
st.markdown(""" """)

st.markdown("""
Resulting generalist model and the chat model are pretty much state-of-the-art 😍  
Below you can see how it compares to fine-tuned models.
""")
st.markdown(""" """)

st.image("pages/DocOwl_1.5/image_7.jpeg", use_column_width=True)
st.markdown(""" """)

st.markdown("""All the models and the datasets (also some eval datasets on above tasks!) are in this [organization](https://t.co/sJdTw1jWTR).  
The [Space](https://t.co/57E9DbNZXf). 
""")
st.markdown(""" """)

st.image("pages/DocOwl_1.5/image_8.jpeg", use_column_width=True)
st.markdown(""" """)

st.info("""
Ressources:  
[mPLUG-DocOwl 1.5: Unified Structure Learning for OCR-free Document Understanding](https://arxiv.org/abs/2403.12895) 
by Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang Zhang, Bo Zhang, Chen Li, Ji Zhang, Qin Jin, Fei Huang, Jingren Zhou (2024)  
[GitHub](https://github.com/X-PLUG/mPLUG-DocOwl)""", icon="📚")


st.markdown(""" """)
st.markdown(""" """)
st.markdown(""" """)
col1, col2, col3 = st.columns(3)
with col1:
    if st.button('Previous paper', use_container_width=True):
        switch_page("Grounding DINO")
with col2:
    if st.button('Home', use_container_width=True):
        switch_page("Home")
with col3:
    if st.button('Next paper', use_container_width=True):
        switch_page("PLLaVA")