import streamlit as st from streamlit_extras.switch_page_button import switch_page st.title("RT-DETR") st.success("""[Original tweet](https://twitter.com/mervenoyann/status/1807790959884665029) (July 1, 2024)""", icon="ℹī¸") st.markdown(""" """) st.markdown("""Real-time DEtection Transformer (RT-DETR) landed in 🤗 Transformers with Apache 2.0 license 😍 Do DETRs Beat YOLOs on Real-time Object Detection? Keep reading 👀 """) st.markdown(""" """) st.video("pages/RT-DETR/video_1.mp4", format="video/mp4") st.markdown(""" """) st.markdown(""" Short answer, it does! 📖 [notebook](https://t.co/NNRpG9cAEa), 🔖 [models](https://t.co/ctwWQqNcEt), 🔖 [demo](https://t.co/VrmDDDjoNw) YOLO models are known to be super fast for real-time computer vision, but they have a downside with being volatile to NMS đŸĨ˛ Transformer-based models on the other hand are computationally not as efficient đŸĨ˛ Isn't there something in between? Enter RT-DETR! The authors combined CNN backbone, multi-stage hybrid decoder (combining convs and attn) with a transformer decoder ⇓ """) st.markdown(""" """) st.image("pages/RT-DETR/image_1.jpg", use_column_width=True) st.markdown(""" """) st.markdown(""" In the paper, authors also claim one can adjust speed by changing decoder layers without retraining altogether. They also conduct many ablation studies and try different decoders. """) st.markdown(""" """) st.image("pages/RT-DETR/image_2.jpg", use_column_width=True) st.markdown(""" """) st.markdown(""" The authors find out that the model performs better in terms of speed and accuracy compared to the previous state-of-the-art 🤩 """) st.markdown(""" """) st.image("pages/RT-DETR/image_3.jpg", use_column_width=True) st.markdown(""" """) st.info(""" Ressources: [DETRs Beat YOLOs on Real-time Object Detection](https://arxiv.org/abs/2304.08069) by Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu, Jie Chen (2023) [GitHub](https://github.com/lyuwenyu/RT-DETR/) [Hugging Face documentation](https://huggingface.co/docs/transformers/main/en/model_doc/rt_detr)""", icon="📚") st.markdown(""" """) st.markdown(""" """) st.markdown(""" """) col1, col2, col3 = st.columns(3) with col1: if st.button('Previous paper', use_container_width=True): switch_page("4M-21") with col2: if st.button('Home', use_container_width=True): switch_page("Home") with col3: if st.button('Next paper', use_container_width=True): switch_page("Llava-NeXT-Interleave")