Spaces:
Runtime error
Runtime error
vgvm
commited on
Commit
•
38c3b1f
1
Parent(s):
b9ca9c7
ui cleanup
Browse files
app.py
CHANGED
@@ -22,40 +22,15 @@ class face_image_to_face_mesh:
|
|
22 |
def __init__(self):
|
23 |
self.zoe_me = True
|
24 |
self.uvwrap = not True
|
25 |
-
self.css = ("""
|
26 |
-
#mesh-display-output {
|
27 |
-
max-height: 44vh;
|
28 |
-
max-width: 44vh;
|
29 |
-
width:auto;
|
30 |
-
height:auto
|
31 |
-
}
|
32 |
-
#img-display-output {
|
33 |
-
max-height: 28vh;
|
34 |
-
max-width: 28vh;
|
35 |
-
width:auto;
|
36 |
-
height:auto
|
37 |
-
}
|
38 |
-
""")
|
39 |
|
40 |
def demo(self):
|
41 |
if self.zoe_me:
|
42 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
43 |
self.zoe = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to(DEVICE).eval()
|
44 |
|
45 |
-
demo = gr.Blocks(css=self.css, cache_examples=True)
|
46 |
with demo:
|
47 |
-
gr.Markdown(
|
48 |
-
# Face Image to Face Quad Mesh
|
49 |
-
|
50 |
-
Uses MediaPipe to detect a face in an image and convert it to a quad mesh.
|
51 |
-
Saves to OBJ since gltf does not support quad faces. The 3d viewer has Y pointing the opposite direction from Blender, so ya hafta spin it.
|
52 |
-
|
53 |
-
The face depth with Zoe can be a bit much and without it is a bit generic. In blender you can fix this just by snapping to the high poly model.
|
54 |
-
|
55 |
-
Highly recommend running it locally. The 3D model has uv values in the faces, but you will have to make the mlt file manually at this point."
|
56 |
-
|
57 |
-
Quick import result in examples/converted/movie-gallery.mp4 under files
|
58 |
-
""")
|
59 |
|
60 |
with gr.Row():
|
61 |
with gr.Column():
|
@@ -73,70 +48,14 @@ class face_image_to_face_mesh:
|
|
73 |
upload_image_btn = gr.Button(value="Detect faces")
|
74 |
if self.zoe_me:
|
75 |
with gr.Group():
|
76 |
-
|
77 |
-
gr.
|
78 |
-
|
79 |
-
gr.Textbox(show_label=False, value="How much to scale the ZoeDepth. 2x is pretty dramatic...")
|
80 |
else:
|
81 |
use_zoe = False
|
82 |
zoe_scale = 0
|
83 |
with gr.Group():
|
84 |
-
|
85 |
-
gr.Textbox(show_label=False, value="Minimum confidence value ([0.0, 1.0]) from the face detection model for the detection to be considered successful.")
|
86 |
-
with gr.Group():
|
87 |
-
gr.Markdown(
|
88 |
-
"""
|
89 |
-
# Using the Textured Mesh in Blender
|
90 |
-
|
91 |
-
There a couple of annoying steps atm after you download the obj from the 3d viewer.
|
92 |
-
|
93 |
-
You can use the script meshin-around.sh in the files section to do the conversion or manually:
|
94 |
-
|
95 |
-
1. edit the file and change the mtllib line to use fun.mtl
|
96 |
-
2. replace / delete all lines that start with 'f', eg :%s,^f.*,,
|
97 |
-
3. uncomment all the lines that start with '#f', eg: :%s,^#f,f,
|
98 |
-
4. save and exit
|
99 |
-
5. create fun.mtl to point to the texture like:
|
100 |
-
|
101 |
-
```
|
102 |
-
newmtl MyMaterial
|
103 |
-
map_Kd fun.png
|
104 |
-
```
|
105 |
-
|
106 |
-
Make sure the obj, mtl and png are all in the same directory
|
107 |
-
|
108 |
-
Now the import will have the texture data: File -> Import -> Wavefront (obj) -> fun.obj
|
109 |
-
|
110 |
-
This is all a work around for a weird hf+gradios+babylonjs bug which seems to be related to the version
|
111 |
-
of babylonjs being used... It works fine in a local babylonjs sandbox...
|
112 |
-
|
113 |
-
# Suggested Workflows
|
114 |
-
|
115 |
-
Here are some workflow ideas.
|
116 |
-
|
117 |
-
## retopologize high poly face mesh
|
118 |
-
|
119 |
-
1. sculpt high poly mesh in blender
|
120 |
-
2. snapshot the face
|
121 |
-
3. generate the mesh using the mediapipe stuff
|
122 |
-
4. import the low poly mediapipe face
|
123 |
-
5. snap the mesh to the high poly model
|
124 |
-
6. model the rest of the low poly model
|
125 |
-
7. bake the normal / etc maps to the low poly face model
|
126 |
-
8. it's just that easy 😛
|
127 |
-
|
128 |
-
Ideally it would be a plugin...
|
129 |
-
|
130 |
-
## stable diffusion integration
|
131 |
-
|
132 |
-
1. generate a face in sd
|
133 |
-
2. generate the mesh
|
134 |
-
3. repose it and use it for further generation
|
135 |
-
|
136 |
-
May need to expanded the generated mesh to cover more, maybe with
|
137 |
-
<a href="https://github.com/shunsukesaito/PIFu" target="_blank">PIFu model</a>.
|
138 |
-
|
139 |
-
""")
|
140 |
|
141 |
with gr.Column():
|
142 |
with gr.Group():
|
@@ -147,13 +66,13 @@ class face_image_to_face_mesh:
|
|
147 |
|
148 |
upload_image_btn.click(
|
149 |
fn=self.detect,
|
150 |
-
inputs=[upload_image, min_detection_confidence,
|
151 |
outputs=[output_mesh, output_image, depth_image, num_faces_detected]
|
152 |
)
|
153 |
demo.launch()
|
154 |
|
155 |
|
156 |
-
def detect(self, image, min_detection_confidence,
|
157 |
width = image.shape[1]
|
158 |
height = image.shape[0]
|
159 |
ratio = width / height
|
@@ -164,7 +83,7 @@ class face_image_to_face_mesh:
|
|
164 |
|
165 |
mesh = "examples/converted/in-granny.obj"
|
166 |
|
167 |
-
if self.zoe_me and
|
168 |
depth = self.zoe.infer_pil(image)
|
169 |
idepth = colorize(depth, cmap='gray_r')
|
170 |
else:
|
@@ -182,7 +101,7 @@ class face_image_to_face_mesh:
|
|
182 |
|
183 |
annotated_image = image.copy()
|
184 |
for face_landmarks in results.multi_face_landmarks:
|
185 |
-
(mesh,mtl,png) = self.toObj(image=image, width=width, height=height, ratio=ratio, landmark_list=face_landmarks, depth=depth, zoe_scale=zoe_scale)
|
186 |
|
187 |
mp_drawing.draw_landmarks(
|
188 |
image=annotated_image,
|
@@ -201,7 +120,7 @@ class face_image_to_face_mesh:
|
|
201 |
|
202 |
return mesh, annotated_image, idepth, 1
|
203 |
|
204 |
-
def toObj( self, image: np.ndarray, width:int, height:int, ratio: float, landmark_list: landmark_pb2.NormalizedLandmarkList, depth: np.ndarray, zoe_scale: float):
|
205 |
print( f'you have such pretty hair', self.temp_dir )
|
206 |
|
207 |
hf_hack = True
|
@@ -215,7 +134,7 @@ class face_image_to_face_mesh:
|
|
215 |
png_file = tempfile.NamedTemporaryFile(suffix='.png', dir=self.temp_dir, delete=False)
|
216 |
|
217 |
############################################
|
218 |
-
(points,coordinates,colors) = self.landmarksToPoints( image, width, height, ratio, landmark_list, depth, zoe_scale )
|
219 |
############################################
|
220 |
|
221 |
lines = []
|
@@ -281,7 +200,7 @@ class face_image_to_face_mesh:
|
|
281 |
print( f'I know it is special to you so I saved it to {obj_file.name} since we are friends' )
|
282 |
return (obj_file.name,mtl_file.name,png_file.name)
|
283 |
|
284 |
-
def landmarksToPoints( self, image:np.ndarray, width: int, height: int, ratio: float, landmark_list: landmark_pb2.NormalizedLandmarkList, depth: np.ndarray, zoe_scale: float ):
|
285 |
points = [] # 3d vertices
|
286 |
coordinates = [] # 2d texture coordinates
|
287 |
colors = [] # 3d rgb info
|
@@ -289,21 +208,20 @@ class face_image_to_face_mesh:
|
|
289 |
mins = [+np.inf] * 3
|
290 |
maxs = [-np.inf] * 3
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
landmark.visibility < _VISIBILITY_THRESHOLD) or
|
295 |
-
(landmark.HasField('presence') and
|
296 |
-
landmark.presence < _PRESENCE_THRESHOLD)):
|
297 |
-
idk_what_to_do_for_this = True
|
298 |
|
|
|
299 |
x, y = _normalized_to_pixel_coordinates(landmark.x,landmark.y,width,height)
|
300 |
color = image[y,x]
|
301 |
colors.append( [value / 255 for value in color ] )
|
302 |
coordinates.append( [x/width,1-y/height] )
|
303 |
|
304 |
if depth is not None:
|
305 |
-
landmark.z = depth[y, x] * zoe_scale
|
306 |
-
|
|
|
|
|
307 |
point = [landmark.x * ratio, landmark.y, landmark.z];
|
308 |
for pidx,value in enumerate( point ):
|
309 |
mins[pidx] = min(mins[pidx],value)
|
@@ -319,6 +237,7 @@ class face_image_to_face_mesh:
|
|
319 |
print( f'maxs: {maxs}' )
|
320 |
return (points,coordinates,colors)
|
321 |
|
|
|
322 |
def totallyNormal(self, p0, p1, p2):
|
323 |
v1 = np.array(p1) - np.array(p0)
|
324 |
v2 = np.array(p2) - np.array(p0)
|
@@ -327,6 +246,93 @@ class face_image_to_face_mesh:
|
|
327 |
return normal.tolist()
|
328 |
|
329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
face_image_to_face_mesh().demo()
|
331 |
|
332 |
# EOF
|
|
|
22 |
def __init__(self):
|
23 |
self.zoe_me = True
|
24 |
self.uvwrap = not True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def demo(self):
|
27 |
if self.zoe_me:
|
28 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
29 |
self.zoe = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to(DEVICE).eval()
|
30 |
|
31 |
+
demo = gr.Blocks(css=self.css(), cache_examples=True)
|
32 |
with demo:
|
33 |
+
gr.Markdown(self.header())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
with gr.Row():
|
36 |
with gr.Column():
|
|
|
48 |
upload_image_btn = gr.Button(value="Detect faces")
|
49 |
if self.zoe_me:
|
50 |
with gr.Group():
|
51 |
+
zoe_scale = gr.Slider(label="Mix the ZoeDepth with the MediaPipe Depth", value=1, minimum=0, maximum=1, step=.01)
|
52 |
+
flat_scale = gr.Slider(label="Depth scale, smaller is flatter and possibly more flattering", value=1, minimum=0, maximum=1, step=.01)
|
53 |
+
min_detection_confidence = gr.Slider(label="Mininum face detection confidence", value=.5, minimum=0, maximum=1.0, step=0.01)
|
|
|
54 |
else:
|
55 |
use_zoe = False
|
56 |
zoe_scale = 0
|
57 |
with gr.Group():
|
58 |
+
gr.Markdown(self.footer())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
with gr.Column():
|
61 |
with gr.Group():
|
|
|
66 |
|
67 |
upload_image_btn.click(
|
68 |
fn=self.detect,
|
69 |
+
inputs=[upload_image, min_detection_confidence,zoe_scale,flat_scale],
|
70 |
outputs=[output_mesh, output_image, depth_image, num_faces_detected]
|
71 |
)
|
72 |
demo.launch()
|
73 |
|
74 |
|
75 |
+
def detect(self, image, min_detection_confidence, zoe_scale, flat_scale):
|
76 |
width = image.shape[1]
|
77 |
height = image.shape[0]
|
78 |
ratio = width / height
|
|
|
83 |
|
84 |
mesh = "examples/converted/in-granny.obj"
|
85 |
|
86 |
+
if self.zoe_me and 0 < zoe_scale:
|
87 |
depth = self.zoe.infer_pil(image)
|
88 |
idepth = colorize(depth, cmap='gray_r')
|
89 |
else:
|
|
|
101 |
|
102 |
annotated_image = image.copy()
|
103 |
for face_landmarks in results.multi_face_landmarks:
|
104 |
+
(mesh,mtl,png) = self.toObj(image=image, width=width, height=height, ratio=ratio, landmark_list=face_landmarks, depth=depth, zoe_scale=zoe_scale, flat_scale=flat_scale)
|
105 |
|
106 |
mp_drawing.draw_landmarks(
|
107 |
image=annotated_image,
|
|
|
120 |
|
121 |
return mesh, annotated_image, idepth, 1
|
122 |
|
123 |
+
def toObj( self, image: np.ndarray, width:int, height:int, ratio: float, landmark_list: landmark_pb2.NormalizedLandmarkList, depth: np.ndarray, zoe_scale: float, flat_scale: float):
|
124 |
print( f'you have such pretty hair', self.temp_dir )
|
125 |
|
126 |
hf_hack = True
|
|
|
134 |
png_file = tempfile.NamedTemporaryFile(suffix='.png', dir=self.temp_dir, delete=False)
|
135 |
|
136 |
############################################
|
137 |
+
(points,coordinates,colors) = self.landmarksToPoints( image, width, height, ratio, landmark_list, depth, zoe_scale, flat_scale )
|
138 |
############################################
|
139 |
|
140 |
lines = []
|
|
|
200 |
print( f'I know it is special to you so I saved it to {obj_file.name} since we are friends' )
|
201 |
return (obj_file.name,mtl_file.name,png_file.name)
|
202 |
|
203 |
+
def landmarksToPoints( self, image:np.ndarray, width: int, height: int, ratio: float, landmark_list: landmark_pb2.NormalizedLandmarkList, depth: np.ndarray, zoe_scale: float, flat_scale: float ):
|
204 |
points = [] # 3d vertices
|
205 |
coordinates = [] # 2d texture coordinates
|
206 |
colors = [] # 3d rgb info
|
|
|
208 |
mins = [+np.inf] * 3
|
209 |
maxs = [-np.inf] * 3
|
210 |
|
211 |
+
mp_scale = 1 - zoe_scale
|
212 |
+
print( f'zoe_scale:{zoe_scale}, mp_scale:{mp_scale}' )
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
for idx, landmark in enumerate(landmark_list.landmark):
|
215 |
x, y = _normalized_to_pixel_coordinates(landmark.x,landmark.y,width,height)
|
216 |
color = image[y,x]
|
217 |
colors.append( [value / 255 for value in color ] )
|
218 |
coordinates.append( [x/width,1-y/height] )
|
219 |
|
220 |
if depth is not None:
|
221 |
+
landmark.z = depth[y, x] * zoe_scale + mp_scale * landmark.z
|
222 |
+
|
223 |
+
landmark.z = landmark.z * flat_scale
|
224 |
+
|
225 |
point = [landmark.x * ratio, landmark.y, landmark.z];
|
226 |
for pidx,value in enumerate( point ):
|
227 |
mins[pidx] = min(mins[pidx],value)
|
|
|
237 |
print( f'maxs: {maxs}' )
|
238 |
return (points,coordinates,colors)
|
239 |
|
240 |
+
|
241 |
def totallyNormal(self, p0, p1, p2):
|
242 |
v1 = np.array(p1) - np.array(p0)
|
243 |
v2 = np.array(p2) - np.array(p0)
|
|
|
246 |
return normal.tolist()
|
247 |
|
248 |
|
249 |
+
def header(self):
|
250 |
+
return ("""
|
251 |
+
# Image to Quad Mesh
|
252 |
+
|
253 |
+
Uses MediaPipe to detect a face in an image and convert it to a quad mesh.
|
254 |
+
Saves to OBJ since gltf does not support quad faces. The 3d viewer has Y pointing the opposite direction from Blender, so ya hafta spin it.
|
255 |
+
|
256 |
+
The face depth with Zoe can be a bit much and without it is a bit generic. In blender you can fix this just by snapping to the high poly model. For photos turning it down to .4 helps, but may still need cleanup...
|
257 |
+
|
258 |
+
Highly recommend running it locally. The 3D model has uv values in the faces, but you will have to either use the script or do some manually tomfoolery.
|
259 |
+
|
260 |
+
Quick import result in examples/converted/movie-gallery.mp4 under files
|
261 |
+
""")
|
262 |
+
|
263 |
+
|
264 |
+
def footer(self):
|
265 |
+
return ( """
|
266 |
+
# Using the Textured Mesh in Blender
|
267 |
+
|
268 |
+
There a couple of annoying steps atm after you download the obj from the 3d viewer.
|
269 |
+
|
270 |
+
You can use the script meshin-around.sh in the files section to do the conversion or manually:
|
271 |
+
|
272 |
+
1. edit the file and change the mtllib line to use fun.mtl
|
273 |
+
2. replace / delete all lines that start with 'f', eg :%s,^f.*,,
|
274 |
+
3. uncomment all the lines that start with '#f', eg: :%s,^#f,f,
|
275 |
+
4. save and exit
|
276 |
+
5. create fun.mtl to point to the texture like:
|
277 |
+
|
278 |
+
```
|
279 |
+
newmtl MyMaterial
|
280 |
+
map_Kd fun.png
|
281 |
+
```
|
282 |
+
|
283 |
+
Make sure the obj, mtl and png are all in the same directory
|
284 |
+
|
285 |
+
Now the import will have the texture data: File -> Import -> Wavefront (obj) -> fun.obj
|
286 |
+
|
287 |
+
This is all a work around for a weird hf+gradios+babylonjs bug which seems to be related to the version
|
288 |
+
of babylonjs being used... It works fine in a local babylonjs sandbox...
|
289 |
+
|
290 |
+
# Suggested Workflows
|
291 |
+
|
292 |
+
Here are some workflow ideas.
|
293 |
+
|
294 |
+
## retopologize high poly face mesh
|
295 |
+
|
296 |
+
1. sculpt high poly mesh in blender
|
297 |
+
2. snapshot the face
|
298 |
+
3. generate the mesh using the mediapipe stuff
|
299 |
+
4. import the low poly mediapipe face
|
300 |
+
5. snap the mesh to the high poly model
|
301 |
+
6. model the rest of the low poly model
|
302 |
+
7. bake the normal / etc maps to the low poly face model
|
303 |
+
8. it's just that easy 😛
|
304 |
+
|
305 |
+
Ideally it would be a plugin...
|
306 |
+
|
307 |
+
## stable diffusion integration
|
308 |
+
|
309 |
+
1. generate a face in sd
|
310 |
+
2. generate the mesh
|
311 |
+
3. repose it and use it for further generation
|
312 |
+
|
313 |
+
May need to expanded the generated mesh to cover more, maybe with
|
314 |
+
<a href="https://github.com/shunsukesaito/PIFu" target="_blank">PIFu model</a>.
|
315 |
+
|
316 |
+
""")
|
317 |
+
|
318 |
+
|
319 |
+
def css(self):
|
320 |
+
return ("""
|
321 |
+
#mesh-display-output {
|
322 |
+
max-height: 44vh;
|
323 |
+
max-width: 44vh;
|
324 |
+
width:auto;
|
325 |
+
height:auto
|
326 |
+
}
|
327 |
+
#img-display-output {
|
328 |
+
max-height: 28vh;
|
329 |
+
max-width: 28vh;
|
330 |
+
width:auto;
|
331 |
+
height:auto
|
332 |
+
}
|
333 |
+
""")
|
334 |
+
|
335 |
+
|
336 |
face_image_to_face_mesh().demo()
|
337 |
|
338 |
# EOF
|