File size: 5,094 Bytes
b2e147d
 
 
 
 
6ff911e
 
b2e147d
 
6ff911e
 
 
8787f4c
6ff911e
 
8787f4c
 
 
 
 
 
 
b2e147d
 
6ff911e
 
b2e147d
6ff911e
b2e147d
6ff911e
 
 
 
 
 
 
 
b2e147d
6ff911e
b2e147d
6ff911e
b2e147d
6ff911e
 
 
b2e147d
 
 
6ff911e
 
 
 
b2e147d
6ff911e
 
 
b2e147d
6ff911e
 
 
 
 
 
 
 
b2e147d
6ff911e
 
 
b2e147d
6ff911e
 
 
 
 
 
 
 
 
b2e147d
 
6ff911e
 
 
b2e147d
6ff911e
 
 
b2e147d
6ff911e
 
 
 
b2e147d
6ff911e
 
 
 
 
b2e147d
 
 
 
 
 
 
 
 
 
 
6ff911e
 
 
 
b2e147d
 
 
 
 
6ff911e
 
 
b2e147d
 
6ff911e
 
 
b2e147d
6ff911e
b2e147d
 
6ff911e
 
 
b2e147d
 
 
6ff911e
 
 
 
 
b2e147d
 
 
6ff911e
 
 
b2e147d
 
6ff911e
b2e147d
 
6ff911e
b2e147d
 
6ff911e
 
 
b2e147d
 
6ff911e
b2e147d
 
6ff911e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import pandas as pd

from modules.module_logsManager import HuggingFaceDatasetSaver
from modules.module_connection import BiasWordExplorerConnector
from tool_info import TOOL_INFO


# --- Interface ---
def interface(
    embedding, # Class Embedding instance
    available_logs: bool,
    lang: str="es"
) -> gr.Blocks:

    # -- Load examples ---
    if lang == 'es':
        from examples.examples_es import examples1_explorar_sesgo_en_palabras, examples2_explorar_sesgo_en_palabras
    elif lang == 'en':
        from examples.examples_en import examples1_explorar_sesgo_en_palabras, examples2_explorar_sesgo_en_palabras


    # --- Init logs ---
    log_callback = HuggingFaceDatasetSaver(
        available_logs=available_logs,
        dataset_name=f"logs_edia_we_{lang}"
    )

    # --- Init vars ---
    connector = BiasWordExplorerConnector(
        embedding=embedding
    )

    # --- Load language ---
    labels = pd.read_json(
        f"language/{lang}.json"
    )["BiasWordExplorer_interface"]

    # --- Interface ---
    interface = gr.Blocks()

    with interface:
        gr.Markdown(
            value=labels["step1"]
        )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    diagnose_list = gr.Textbox(
                        lines=2,
                        label=labels["wordListToDiagnose"]
                    )
                with gr.Row():
                    gr.Markdown(
                        value=labels["step2&2Spaces"]
                    )
                with gr.Row():
                    wordlist_1 = gr.Textbox(
                        lines=2,
                        label=labels["wordList1"]
                    )
                    wordlist_2 = gr.Textbox(
                        lines=2, 
                        label=labels["wordList2"]
                    )
                with gr.Row():
                    gr.Markdown(
                        value=labels["step2&4Spaces"]
                    )
                with gr.Row():
                    wordlist_3 = gr.Textbox(
                        lines=2, 
                        label=labels["wordList3"]
                    )
                    wordlist_4 = gr.Textbox(
                        lines=2, 
                        label=labels["wordList4"]
                    )

            with gr.Column():
                with gr.Row():
                    bias2d = gr.Button(
                        value=labels["plot2SpacesButton"]
                    )
                with gr.Row():
                    bias4d = gr.Button(
                        value=labels["plot4SpacesButton"]
                    )
                with gr.Row():
                    err_msg = gr.Markdown(
                        label="", 
                        visible=True
                    )
                with gr.Row():
                    bias_plot = gr.Plot(
                        label="", 
                        show_label=False
                    )

        with gr.Row():
            examples = gr.Examples(
                fn=connector.calculate_bias_2d,
                inputs=[wordlist_1, wordlist_2, diagnose_list],
                outputs=[bias_plot, err_msg],
                examples=examples1_explorar_sesgo_en_palabras,
                label=labels["examples2Spaces"]
            )
        with gr.Row():
            examples = gr.Examples(
                fn=connector.calculate_bias_4d,
                inputs=[wordlist_1, wordlist_2,wordlist_3, wordlist_4, diagnose_list],
                outputs=[
                    bias_plot, err_msg
                ],
                examples=examples2_explorar_sesgo_en_palabras,
                label=labels["examples4Spaces"]
            )

        with gr.Row():
            gr.Markdown(
                value=TOOL_INFO
            )

        bias2d.click(
            fn=connector.calculate_bias_2d,
            inputs=[wordlist_1, wordlist_2, diagnose_list],
            outputs=[bias_plot, err_msg]
        )

        bias4d.click(
            fn=connector.calculate_bias_4d,
            inputs=[wordlist_1, wordlist_2,
                    wordlist_3, wordlist_4, diagnose_list],
            outputs=[bias_plot, err_msg]
        )

        # --- Logs ---
        save_field = [wordlist_1, wordlist_2,wordlist_3, wordlist_4, diagnose_list]
        log_callback.setup(
            components=save_field,
            flagging_dir="logs_word_bias"
        )

        bias2d.click(
            fn=lambda *args: log_callback.flag(
                flag_data=args,
                flag_option="plot_2d",
                username="vialibre"
            ),
            inputs=save_field,
            outputs=None,
            preprocess=False
        )

        bias4d.click(
            fn=lambda *args: log_callback.flag(
                flag_data=args,
                flag_option="plot_4d",
                username="vialibre"
            ),
            inputs=save_field,
            outputs=None,
            preprocess=False
        )

    return interface