Spaces:
Runtime error
Runtime error
File size: 18,342 Bytes
d945eeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import os
from dataclasses import dataclass, field
from typing import Any, List, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
import trimesh
from einops import rearrange
from huggingface_hub import hf_hub_download
from jaxtyping import Float
from omegaconf import OmegaConf
from PIL import Image
from safetensors.torch import load_model
from torch import Tensor
from sf3d.models.isosurface import MarchingTetrahedraHelper
from sf3d.models.mesh import Mesh
from sf3d.models.utils import (
BaseModule,
ImageProcessor,
convert_data,
dilate_fill,
dot,
find_class,
float32_to_uint8_np,
normalize,
scale_tensor,
)
from sf3d.utils import create_intrinsic_from_fov_deg, default_cond_c2w
from .texture_baker import TextureBaker
class SF3D(BaseModule):
@dataclass
class Config(BaseModule.Config):
cond_image_size: int
isosurface_resolution: int
isosurface_threshold: float = 10.0
radius: float = 1.0
background_color: list[float] = field(default_factory=lambda: [0.5, 0.5, 0.5])
default_fovy_deg: float = 40.0
default_distance: float = 1.6
camera_embedder_cls: str = ""
camera_embedder: dict = field(default_factory=dict)
image_tokenizer_cls: str = ""
image_tokenizer: dict = field(default_factory=dict)
tokenizer_cls: str = ""
tokenizer: dict = field(default_factory=dict)
backbone_cls: str = ""
backbone: dict = field(default_factory=dict)
post_processor_cls: str = ""
post_processor: dict = field(default_factory=dict)
decoder_cls: str = ""
decoder: dict = field(default_factory=dict)
image_estimator_cls: str = ""
image_estimator: dict = field(default_factory=dict)
global_estimator_cls: str = ""
global_estimator: dict = field(default_factory=dict)
cfg: Config
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: str, config_name: str, weight_name: str
):
if os.path.isdir(pretrained_model_name_or_path):
config_path = os.path.join(pretrained_model_name_or_path, config_name)
weight_path = os.path.join(pretrained_model_name_or_path, weight_name)
else:
config_path = hf_hub_download(
repo_id=pretrained_model_name_or_path, filename=config_name
)
weight_path = hf_hub_download(
repo_id=pretrained_model_name_or_path, filename=weight_name
)
cfg = OmegaConf.load(config_path)
OmegaConf.resolve(cfg)
model = cls(cfg)
load_model(model, weight_path)
return model
@property
def device(self):
return next(self.parameters()).device
def configure(self):
self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
self.cfg.image_tokenizer
)
self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer)
self.camera_embedder = find_class(self.cfg.camera_embedder_cls)(
self.cfg.camera_embedder
)
self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone)
self.post_processor = find_class(self.cfg.post_processor_cls)(
self.cfg.post_processor
)
self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder)
self.image_estimator = find_class(self.cfg.image_estimator_cls)(
self.cfg.image_estimator
)
self.global_estimator = find_class(self.cfg.global_estimator_cls)(
self.cfg.global_estimator
)
self.bbox: Float[Tensor, "2 3"]
self.register_buffer(
"bbox",
torch.as_tensor(
[
[-self.cfg.radius, -self.cfg.radius, -self.cfg.radius],
[self.cfg.radius, self.cfg.radius, self.cfg.radius],
],
dtype=torch.float32,
),
)
self.isosurface_helper = MarchingTetrahedraHelper(
self.cfg.isosurface_resolution,
os.path.join(
os.path.dirname(__file__),
"..",
"load",
"tets",
f"{self.cfg.isosurface_resolution}_tets.npz",
),
)
self.baker = TextureBaker()
self.image_processor = ImageProcessor()
def triplane_to_meshes(
self, triplanes: Float[Tensor, "B 3 Cp Hp Wp"]
) -> list[Mesh]:
meshes = []
for i in range(triplanes.shape[0]):
triplane = triplanes[i]
grid_vertices = scale_tensor(
self.isosurface_helper.grid_vertices.to(triplanes.device),
self.isosurface_helper.points_range,
self.bbox,
)
values = self.query_triplane(grid_vertices, triplane)
decoded = self.decoder(values, include=["vertex_offset", "density"])
sdf = decoded["density"] - self.cfg.isosurface_threshold
deform = decoded["vertex_offset"].squeeze(0)
mesh: Mesh = self.isosurface_helper(
sdf.view(-1, 1), deform.view(-1, 3) if deform is not None else None
)
mesh.v_pos = scale_tensor(
mesh.v_pos, self.isosurface_helper.points_range, self.bbox
)
meshes.append(mesh)
return meshes
def query_triplane(
self,
positions: Float[Tensor, "*B N 3"],
triplanes: Float[Tensor, "*B 3 Cp Hp Wp"],
) -> Float[Tensor, "*B N F"]:
batched = positions.ndim == 3
if not batched:
# no batch dimension
triplanes = triplanes[None, ...]
positions = positions[None, ...]
assert triplanes.ndim == 5 and positions.ndim == 3
positions = scale_tensor(
positions, (-self.cfg.radius, self.cfg.radius), (-1, 1)
)
indices2D: Float[Tensor, "B 3 N 2"] = torch.stack(
(positions[..., [0, 1]], positions[..., [0, 2]], positions[..., [1, 2]]),
dim=-3,
).to(triplanes.dtype)
out: Float[Tensor, "B3 Cp 1 N"] = F.grid_sample(
rearrange(triplanes, "B Np Cp Hp Wp -> (B Np) Cp Hp Wp", Np=3).float(),
rearrange(indices2D, "B Np N Nd -> (B Np) () N Nd", Np=3).float(),
align_corners=True,
mode="bilinear",
)
out = rearrange(out, "(B Np) Cp () N -> B N (Np Cp)", Np=3)
return out
def get_scene_codes(self, batch) -> Float[Tensor, "B 3 C H W"]:
# if batch[rgb_cond] is only one view, add a view dimension
if len(batch["rgb_cond"].shape) == 4:
batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
batch["mask_cond"] = batch["mask_cond"].unsqueeze(1)
batch["c2w_cond"] = batch["c2w_cond"].unsqueeze(1)
batch["intrinsic_cond"] = batch["intrinsic_cond"].unsqueeze(1)
batch["intrinsic_normed_cond"] = batch["intrinsic_normed_cond"].unsqueeze(1)
batch_size, n_input_views = batch["rgb_cond"].shape[:2]
camera_embeds: Optional[Float[Tensor, "B Nv Cc"]]
camera_embeds = self.camera_embedder(**batch)
input_image_tokens: Float[Tensor, "B Nv Cit Nit"] = self.image_tokenizer(
rearrange(batch["rgb_cond"], "B Nv H W C -> B Nv C H W"),
modulation_cond=camera_embeds,
)
input_image_tokens = rearrange(
input_image_tokens, "B Nv C Nt -> B (Nv Nt) C", Nv=n_input_views
)
tokens: Float[Tensor, "B Ct Nt"] = self.tokenizer(batch_size)
tokens = self.backbone(
tokens,
encoder_hidden_states=input_image_tokens,
modulation_cond=None,
)
direct_codes = self.tokenizer.detokenize(tokens)
scene_codes = self.post_processor(direct_codes)
return scene_codes, direct_codes
def run_image(
self,
image: Image,
bake_resolution: int,
estimate_illumination: bool = False,
) -> Tuple[trimesh.Trimesh, dict[str, Any]]:
if image.mode != "RGBA":
raise ValueError("Image must be in RGBA mode")
img_cond = (
torch.from_numpy(
np.asarray(
image.resize((self.cfg.cond_image_size, self.cfg.cond_image_size))
).astype(np.float32)
/ 255.0
)
.float()
.clip(0, 1)
.to(self.device)
)
mask_cond = img_cond[:, :, -1:]
rgb_cond = torch.lerp(
torch.tensor(self.cfg.background_color, device=self.device)[None, None, :],
img_cond[:, :, :3],
mask_cond,
)
c2w_cond = default_cond_c2w(self.cfg.default_distance).to(self.device)
intrinsic, intrinsic_normed_cond = create_intrinsic_from_fov_deg(
self.cfg.default_fovy_deg,
self.cfg.cond_image_size,
self.cfg.cond_image_size,
)
batch = {
"rgb_cond": rgb_cond,
"mask_cond": mask_cond,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.to(self.device).unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.to(self.device).unsqueeze(0),
}
meshes, global_dict = self.generate_mesh(
batch, bake_resolution, estimate_illumination
)
return meshes[0], global_dict
def generate_mesh(
self,
batch,
bake_resolution: int,
estimate_illumination: bool = False,
) -> Tuple[List[trimesh.Trimesh], dict[str, Any]]:
batch["rgb_cond"] = self.image_processor(
batch["rgb_cond"], self.cfg.cond_image_size
)
batch["mask_cond"] = self.image_processor(
batch["mask_cond"], self.cfg.cond_image_size
)
scene_codes, non_postprocessed_codes = self.get_scene_codes(batch)
global_dict = {}
if self.image_estimator is not None:
global_dict.update(
self.image_estimator(batch["rgb_cond"] * batch["mask_cond"])
)
if self.global_estimator is not None and estimate_illumination:
global_dict.update(self.global_estimator(non_postprocessed_codes))
with torch.no_grad():
with torch.autocast(device_type="cuda", enabled=False):
meshes = self.triplane_to_meshes(scene_codes)
rets = []
for i, mesh in enumerate(meshes):
# Check for empty mesh
if mesh.v_pos.shape[0] == 0:
rets.append(trimesh.Trimesh())
continue
mesh.unwrap_uv()
# Build textures
rast = self.baker.rasterize(
mesh.v_tex, mesh.t_pos_idx, bake_resolution
)
bake_mask = self.baker.get_mask(rast)
pos_bake = self.baker.interpolate(
mesh.v_pos,
rast,
mesh.t_pos_idx,
mesh.v_tex,
)
gb_pos = pos_bake[bake_mask]
tri_query = self.query_triplane(gb_pos, scene_codes[i])[0]
decoded = self.decoder(
tri_query, exclude=["density", "vertex_offset"]
)
nrm = self.baker.interpolate(
mesh.v_nrm,
rast,
mesh.t_pos_idx,
mesh.v_tex,
)
gb_nrm = F.normalize(nrm[bake_mask], dim=-1)
decoded["normal"] = gb_nrm
# Check if any keys in global_dict start with decoded_
for k, v in global_dict.items():
if k.startswith("decoder_"):
decoded[k.replace("decoder_", "")] = v[i]
mat_out = {
"albedo": decoded["features"],
"roughness": decoded["roughness"],
"metallic": decoded["metallic"],
"normal": normalize(decoded["perturb_normal"]),
"bump": None,
}
for k, v in mat_out.items():
if v is None:
continue
if v.shape[0] == 1:
# Skip and directly add a single value
mat_out[k] = v[0]
else:
f = torch.zeros(
bake_resolution,
bake_resolution,
v.shape[-1],
dtype=v.dtype,
device=v.device,
)
if v.shape == f.shape:
continue
if k == "normal":
# Use un-normalized tangents here so that larger smaller tris
# Don't effect the tangents that much
tng = self.baker.interpolate(
mesh.v_tng,
rast,
mesh.t_pos_idx,
mesh.v_tex,
)
gb_tng = tng[bake_mask]
gb_tng = F.normalize(gb_tng, dim=-1)
gb_btng = F.normalize(
torch.cross(gb_tng, gb_nrm, dim=-1), dim=-1
)
normal = F.normalize(mat_out["normal"], dim=-1)
bump = torch.cat(
# Check if we have to flip some things
(
dot(normal, gb_tng),
dot(normal, gb_btng),
dot(normal, gb_nrm).clip(
0.3, 1
), # Never go below 0.3. This would indicate a flipped (or close to one) normal
),
-1,
)
bump[..., :2] *= 0.5
bump = (bump * 0.5 + 0.5).clamp(0, 1)
f[bake_mask] = bump.view(-1, 3)
mat_out["bump"] = f
else:
f[bake_mask] = v.view(-1, v.shape[-1])
mat_out[k] = f
def uv_padding(arr):
if arr.ndim == 1:
return arr
return (
dilate_fill(
arr.permute(2, 0, 1)[None, ...],
bake_mask.unsqueeze(0).unsqueeze(0),
iterations=bake_resolution // 150,
)
.squeeze(0)
.permute(1, 2, 0)
)
verts_np = convert_data(mesh.v_pos)
faces = convert_data(mesh.t_pos_idx)
uvs = convert_data(mesh.v_tex)
basecolor_tex = Image.fromarray(
float32_to_uint8_np(convert_data(uv_padding(mat_out["albedo"])))
).convert("RGB")
basecolor_tex.format = "JPEG"
metallic = mat_out["metallic"].squeeze().cpu().item()
roughness = mat_out["roughness"].squeeze().cpu().item()
if "bump" in mat_out and mat_out["bump"] is not None:
bump_np = convert_data(uv_padding(mat_out["bump"]))
bump_up = np.ones_like(bump_np)
bump_up[..., :2] = 0.5
bump_up[..., 2:] = 1
bump_tex = Image.fromarray(
float32_to_uint8_np(
bump_np,
dither=True,
# Do not dither if something is perfectly flat
dither_mask=np.all(
bump_np == bump_up, axis=-1, keepdims=True
).astype(np.float32),
)
).convert("RGB")
bump_tex.format = (
"JPEG" # PNG would be better but the assets are larger
)
else:
bump_tex = None
material = trimesh.visual.material.PBRMaterial(
baseColorTexture=basecolor_tex,
roughnessFactor=roughness,
metallicFactor=metallic,
normalTexture=bump_tex,
)
tmesh = trimesh.Trimesh(
vertices=verts_np,
faces=faces,
visual=trimesh.visual.texture.TextureVisuals(
uv=uvs, material=material
),
)
rot = trimesh.transformations.rotation_matrix(
np.radians(-90), [1, 0, 0]
)
tmesh.apply_transform(rot)
tmesh.apply_transform(
trimesh.transformations.rotation_matrix(
np.radians(90), [0, 1, 0]
)
)
tmesh.invert()
rets.append(tmesh)
return rets, global_dict
|