Spaces:
Sleeping
Sleeping
"""A simple web interactive chat demo based on gradio.""" | |
import os | |
import time | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
import os | |
import lightning as L | |
import torch | |
import time | |
import spaces | |
from snac import SNAC | |
from litgpt import Tokenizer | |
from litgpt.utils import ( | |
num_parameters, | |
) | |
from litgpt.generate.base import ( | |
generate_AA, | |
generate_ASR, | |
generate_TA, | |
generate_TT, | |
generate_AT, | |
generate_TA_BATCH, | |
) | |
from typing import Any, Literal, Optional | |
import soundfile as sf | |
from litgpt.model import GPT, Config | |
from lightning.fabric.utilities.load import _lazy_load as lazy_load | |
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str | |
from utils.snac_utils import get_snac | |
import whisper | |
from tqdm import tqdm | |
from huggingface_hub import snapshot_download | |
from litgpt.generate.base import sample | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
ckpt_dir = "./checkpoint" | |
OUT_CHUNK = 4096 | |
OUT_RATE = 24000 | |
OUT_CHANNELS = 1 | |
# TODO | |
text_vocabsize = 151936 | |
text_specialtokens = 64 | |
audio_vocabsize = 4096 | |
audio_specialtokens = 64 | |
padded_text_vocabsize = text_vocabsize + text_specialtokens | |
padded_audio_vocabsize = audio_vocabsize + audio_specialtokens | |
_eot = text_vocabsize | |
_pad_t = text_vocabsize + 1 | |
_input_t = text_vocabsize + 2 | |
_answer_t = text_vocabsize + 3 | |
_asr = text_vocabsize + 4 | |
_eoa = audio_vocabsize | |
_pad_a = audio_vocabsize + 1 | |
_input_a = audio_vocabsize + 2 | |
_answer_a = audio_vocabsize + 3 | |
_split = audio_vocabsize + 4 | |
def download_model(ckpt_dir): | |
repo_id = "gpt-omni/mini-omni" | |
snapshot_download(repo_id, local_dir=ckpt_dir, revision="main") | |
if not os.path.exists(ckpt_dir): | |
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface") | |
download_model(ckpt_dir) | |
snacmodel = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device) | |
whispermodel = whisper.load_model("small").to(device) | |
whispermodel.eval() | |
text_tokenizer = Tokenizer(ckpt_dir) | |
# fabric = L.Fabric(devices=1, strategy="auto") | |
config = Config.from_file(ckpt_dir + "/model_config.yaml") | |
config.post_adapter = False | |
model = GPT(config, device=device) | |
state_dict = lazy_load(ckpt_dir + "/lit_model.pth") | |
model.load_state_dict(state_dict, strict=True) | |
model = model.to(device) | |
model.eval() | |
def get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device): | |
# with torch.no_grad(): | |
mel = mel.unsqueeze(0).to(device) | |
# audio_feature = whisper.decode(whispermodel,mel, options).audio_features | |
audio_feature = whispermodel.embed_audio(mel)[0][:leng] | |
T = audio_feature.size(0) | |
input_ids_AA = [] | |
for i in range(7): | |
input_ids_item = [] | |
input_ids_item.append(layershift(_input_a, i)) | |
input_ids_item += [layershift(_pad_a, i)] * T | |
input_ids_item += [(layershift(_eoa, i)), layershift(_answer_a, i)] | |
input_ids_AA.append(torch.tensor(input_ids_item)) | |
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t]) | |
input_ids_AA.append(input_id_T) | |
input_ids_AT = [] | |
for i in range(7): | |
input_ids_item = [] | |
input_ids_item.append(layershift(_input_a, i)) | |
input_ids_item += [layershift(_pad_a, i)] * T | |
input_ids_item += [(layershift(_eoa, i)), layershift(_pad_a, i)] | |
input_ids_AT.append(torch.tensor(input_ids_item)) | |
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t]) | |
input_ids_AT.append(input_id_T) | |
input_ids = [input_ids_AA, input_ids_AT] | |
stacked_inputids = [[] for _ in range(8)] | |
for i in range(2): | |
for j in range(8): | |
stacked_inputids[j].append(input_ids[i][j]) | |
stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids] | |
return torch.stack([audio_feature, audio_feature]), stacked_inputids | |
def next_token_batch( | |
model: GPT, | |
audio_features: torch.tensor, | |
input_ids: list, | |
whisper_lens: int, | |
task: list, | |
input_pos: torch.Tensor, | |
**kwargs: Any, | |
) -> torch.Tensor: | |
input_pos = input_pos.to(model.device) | |
input_ids = [input_id.to(model.device) for input_id in input_ids] | |
logits_a, logit_t = model( | |
audio_features, input_ids, input_pos, whisper_lens=whisper_lens, task=task | |
) | |
for i in range(7): | |
logits_a[i] = logits_a[i][0].unsqueeze(0) | |
logit_t = logit_t[1].unsqueeze(0) | |
next_audio_tokens = [] | |
for logit_a in logits_a: | |
next_a = sample(logit_a, **kwargs).to(dtype=input_ids[0].dtype) | |
next_audio_tokens.append(next_a) | |
next_t = sample(logit_t, **kwargs).to(dtype=input_ids[0].dtype) | |
return next_audio_tokens, next_t | |
def load_audio(path): | |
audio = whisper.load_audio(path) | |
duration_ms = (len(audio) / 16000) * 1000 | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio) | |
return mel, int(duration_ms / 20) + 1 | |
def generate_audio_data(snac_tokens, snacmodel, device=None): | |
audio = reconstruct_tensors(snac_tokens, device) | |
with torch.inference_mode(): | |
audio_hat = snacmodel.decode(audio) | |
audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0 | |
audio_data = audio_data.astype(np.int16) | |
audio_data = audio_data.tobytes() | |
return audio_data | |
def run_AT_batch_stream( | |
audio_path, | |
stream_stride=4, | |
max_returned_tokens=2048, | |
temperature=0.9, | |
top_k=1, | |
top_p=1.0, | |
eos_id_a=_eoa, | |
eos_id_t=_eot, | |
): | |
assert os.path.exists(audio_path), f"audio file {audio_path} not found" | |
model.set_kv_cache(batch_size=2) | |
mel, leng = load_audio(audio_path) | |
audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device) | |
T = input_ids[0].size(1) | |
# device = input_ids[0].device | |
assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}" | |
if model.max_seq_length < max_returned_tokens - 1: | |
raise NotImplementedError( | |
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}" | |
) | |
input_pos = torch.tensor([T], device=device) | |
list_output = [[] for i in range(8)] | |
tokens_A, token_T = next_token_batch( | |
model, | |
audio_feature.to(torch.float32).to(model.device), | |
input_ids, | |
[T - 3, T - 3], | |
["A1T2", "A1T2"], | |
input_pos=torch.arange(0, T, device=device), | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
) | |
for i in range(7): | |
list_output[i].append(tokens_A[i].tolist()[0]) | |
list_output[7].append(token_T.tolist()[0]) | |
model_input_ids = [[] for i in range(8)] | |
for i in range(7): | |
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize + i * padded_audio_vocabsize | |
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32)) | |
model_input_ids[i].append(torch.tensor([layershift(4097, i)], device=device)) | |
model_input_ids[i] = torch.stack(model_input_ids[i]) | |
model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
model_input_ids[-1] = torch.stack(model_input_ids[-1]) | |
text_end = False | |
index = 1 | |
nums_generate = stream_stride | |
begin_generate = False | |
current_index = 0 | |
for _ in tqdm(range(2, max_returned_tokens - T + 1)): | |
tokens_A, token_T = next_token_batch( | |
model, | |
None, | |
model_input_ids, | |
None, | |
None, | |
input_pos=input_pos, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
) | |
if text_end: | |
token_T = torch.tensor([_pad_t], device=device) | |
if tokens_A[-1] == eos_id_a: | |
break | |
if token_T == eos_id_t: | |
text_end = True | |
for i in range(7): | |
list_output[i].append(tokens_A[i].tolist()[0]) | |
list_output[7].append(token_T.tolist()[0]) | |
model_input_ids = [[] for i in range(8)] | |
for i in range(7): | |
tokens_A[i] = tokens_A[i].clone() +padded_text_vocabsize + i * padded_audio_vocabsize | |
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32)) | |
model_input_ids[i].append( | |
torch.tensor([layershift(4097, i)], device=device) | |
) | |
model_input_ids[i] = torch.stack(model_input_ids[i]) | |
model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
model_input_ids[-1] = torch.stack(model_input_ids[-1]) | |
if index == 7: | |
begin_generate = True | |
if begin_generate: | |
current_index += 1 | |
if current_index == nums_generate: | |
current_index = 0 | |
snac = get_snac(list_output, index, nums_generate) | |
audio_stream = generate_audio_data(snac, snacmodel, device) | |
yield audio_stream | |
input_pos = input_pos.add_(1) | |
index += 1 | |
text = text_tokenizer.decode(torch.tensor(list_output[-1])) | |
print(f"text output: {text}") | |
model.clear_kv_cache() | |
return list_output | |
for chunk in run_AT_batch_stream('./data/samples/output1.wav'): | |
pass | |
def process_audio(audio): | |
filepath = audio | |
print(f"filepath: {filepath}") | |
if filepath is None: | |
return | |
cnt = 0 | |
tik = time.time() | |
for chunk in run_AT_batch_stream(filepath): | |
# Convert chunk to numpy array | |
if cnt == 0: | |
print(f"first chunk time cost: {time.time() - tik:.3f}") | |
cnt += 1 | |
audio_data = np.frombuffer(chunk, dtype=np.int16) | |
audio_data = audio_data.reshape(-1, OUT_CHANNELS) | |
yield OUT_RATE, audio_data.astype(np.int16) | |
demo = gr.Interface( | |
process_audio, | |
inputs=gr.Audio(type="filepath", label="Microphone"), | |
outputs=[gr.Audio(label="Response", streaming=True, autoplay=True)], | |
title="Chat Mini-Omni Demo", | |
# live=True, | |
) | |
demo.queue() | |
demo.launch() |