import torch import time import numpy as np class SnacConfig: audio_vocab_size = 4096 padded_vocab_size = 4160 end_of_audio = 4097 snac_config = SnacConfig() def get_time_str(): time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime()) return time_str def layershift(input_id, layer, stride=4160, shift=152000): return input_id + shift + layer * stride def generate_audio_data(snac_tokens, snacmodel): audio = reconstruct_tensors(snac_tokens) with torch.inference_mode(): audio_hat = snacmodel.decode(audio) audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0 audio_data = audio_data.astype(np.int16) audio_data = audio_data.tobytes() return audio_data def get_snac(list_output, index, nums_generate): snac = [] start = index for i in range(nums_generate): snac.append("#") for j in range(7): snac.append(list_output[j][start - nums_generate - 5 + j + i]) return snac def reconscruct_snac(output_list): if len(output_list) == 8: output_list = output_list[:-1] output = [] for i in range(7): output_list[i] = output_list[i][i + 1 :] for i in range(len(output_list[-1])): output.append("#") for j in range(7): output.append(output_list[j][i]) return output def reconstruct_tensors(flattened_output): """Reconstructs the list of tensors from the flattened output.""" def count_elements_between_hashes(lst): try: # Find the index of the first '#' first_index = lst.index("#") # Find the index of the second '#' after the first second_index = lst.index("#", first_index + 1) # Count the elements between the two indices return second_index - first_index - 1 except ValueError: # Handle the case where there aren't enough '#' symbols return "List does not contain two '#' symbols" def remove_elements_before_hash(flattened_list): try: # Find the index of the first '#' first_hash_index = flattened_list.index("#") # Return the list starting from the first '#' return flattened_list[first_hash_index:] except ValueError: # Handle the case where there is no '#' return "List does not contain the symbol '#'" def list_to_torch_tensor(tensor1): # Convert the list to a torch tensor tensor = torch.tensor(tensor1) # Reshape the tensor to have size (1, n) tensor = tensor.unsqueeze(0) return tensor flattened_output = remove_elements_before_hash(flattened_output) codes = [] tensor1 = [] tensor2 = [] tensor3 = [] tensor4 = [] n_tensors = count_elements_between_hashes(flattened_output) if n_tensors == 7: for i in range(0, len(flattened_output), 8): tensor1.append(flattened_output[i + 1]) tensor2.append(flattened_output[i + 2]) tensor3.append(flattened_output[i + 3]) tensor3.append(flattened_output[i + 4]) tensor2.append(flattened_output[i + 5]) tensor3.append(flattened_output[i + 6]) tensor3.append(flattened_output[i + 7]) codes = [ list_to_torch_tensor(tensor1).cuda(), list_to_torch_tensor(tensor2).cuda(), list_to_torch_tensor(tensor3).cuda(), ] if n_tensors == 15: for i in range(0, len(flattened_output), 16): tensor1.append(flattened_output[i + 1]) tensor2.append(flattened_output[i + 2]) tensor3.append(flattened_output[i + 3]) tensor4.append(flattened_output[i + 4]) tensor4.append(flattened_output[i + 5]) tensor3.append(flattened_output[i + 6]) tensor4.append(flattened_output[i + 7]) tensor4.append(flattened_output[i + 8]) tensor2.append(flattened_output[i + 9]) tensor3.append(flattened_output[i + 10]) tensor4.append(flattened_output[i + 11]) tensor4.append(flattened_output[i + 12]) tensor3.append(flattened_output[i + 13]) tensor4.append(flattened_output[i + 14]) tensor4.append(flattened_output[i + 15]) codes = [ list_to_torch_tensor(tensor1).cuda(), list_to_torch_tensor(tensor2).cuda(), list_to_torch_tensor(tensor3).cuda(), list_to_torch_tensor(tensor4).cuda(), ] return codes