Spaces:
Runtime error
Runtime error
Upload 16 files
Browse files- Examples/car.jpg +0 -0
- Examples/home.jpg +0 -0
- Examples/train.jpg +0 -0
- Examples/train_persons.jpg +0 -0
- README.md +34 -5
- Yolov3.pth +3 -0
- app.py +139 -0
- config.py +103 -0
- dataloader.ipynb +0 -0
- dataset.py +181 -0
- dataset_org.py +127 -0
- gitattributes.txt +35 -0
- loss.py +79 -0
- model.py +361 -0
- requirements.txt +11 -0
- utils.py +584 -0
Examples/car.jpg
ADDED
Examples/home.jpg
ADDED
Examples/train.jpg
ADDED
Examples/train_persons.jpg
ADDED
README.md
CHANGED
@@ -1,13 +1,42 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Yolo V3
|
3 |
+
emoji: π
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.40.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
|
16 |
+
# YoloV3 object detection model- Interactive Interface
|
17 |
+
|
18 |
+
This project Impliments a simple Gradio interface to perform inference on YoloV3 object detection.
|
19 |
+
|
20 |
+
## Task :
|
21 |
+
|
22 |
+
The task involves performing detection on the Pascal voc dataset using the YoloV3 model built with PyTorch and PyTorch Lightning.
|
23 |
+
|
24 |
+
## Files :
|
25 |
+
|
26 |
+
1. `requirements.txt`: Contains the necessary packages required for installation.
|
27 |
+
2. `model.py`: Contains the YoloV3 model architecture.
|
28 |
+
3. `YoloV3.pth`: Trained model checkpoint file containing model weights.
|
29 |
+
4. `examples/`: Folder containing example images (e.g., car.jpg, home.jpg, etc.).
|
30 |
+
5. `app.py`: Contains the Gradio code for the interactive interface. Users can select input images or examples of the model that detects objects.
|
31 |
+
|
32 |
+
|
33 |
+
## Implementation
|
34 |
+
|
35 |
+
The following features are implemented using Gradio:
|
36 |
+
|
37 |
+
1. **Upload and Select Images:** Users can upload new images or select from a set of example images.
|
38 |
+
|
39 |
+
|
40 |
+
## Usage
|
41 |
+
|
42 |
+
1. Run the `app.py` script to launch the interactive Gradio interface.
|
Yolov3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12624fe50998f8a5af81cd67edff090b88dbdabf7a8f1dc63c0caa0b731cae7e
|
3 |
+
size 246876272
|
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
from torchvision import datasets, transforms
|
6 |
+
from PIL import Image
|
7 |
+
#from train import YOLOv3Lightning
|
8 |
+
from utils import non_max_suppression, plot_image, cells_to_bboxes
|
9 |
+
from dataset import YOLODataset
|
10 |
+
|
11 |
+
import config
|
12 |
+
import albumentations as A
|
13 |
+
from albumentations.pytorch import ToTensorV2
|
14 |
+
from model import YoloVersion3
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
import matplotlib.patches as patches
|
17 |
+
|
18 |
+
# Load the model
|
19 |
+
model = YoloVersion3( )
|
20 |
+
model.load_state_dict(torch.load('Yolov3.pth', map_location=torch.device('cpu')), strict=False)
|
21 |
+
model.eval()
|
22 |
+
|
23 |
+
# Anchor
|
24 |
+
scaled_anchors = (
|
25 |
+
torch.tensor(config.ANCHORS)
|
26 |
+
* torch.tensor(config.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
27 |
+
).to("cpu")
|
28 |
+
|
29 |
+
|
30 |
+
test_transforms = A.Compose(
|
31 |
+
[
|
32 |
+
A.LongestMaxSize(max_size=416),
|
33 |
+
A.PadIfNeeded(
|
34 |
+
min_height=416, min_width=416, border_mode=cv2.BORDER_CONSTANT
|
35 |
+
),
|
36 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
37 |
+
ToTensorV2(),
|
38 |
+
]
|
39 |
+
)
|
40 |
+
|
41 |
+
def plot_image(image, boxes):
|
42 |
+
"""Plots predicted bounding boxes on the image"""
|
43 |
+
cmap = plt.get_cmap("tab20b")
|
44 |
+
class_labels = config.PASCAL_CLASSES
|
45 |
+
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
|
46 |
+
im = np.array(image)
|
47 |
+
height, width, _ = im.shape
|
48 |
+
|
49 |
+
# Create figure and axes
|
50 |
+
fig, ax = plt.subplots(1)
|
51 |
+
# Display the image
|
52 |
+
ax.imshow(im)
|
53 |
+
|
54 |
+
# Create a Rectangle patch
|
55 |
+
for box in boxes:
|
56 |
+
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
|
57 |
+
class_pred = box[0]
|
58 |
+
box = box[2:]
|
59 |
+
upper_left_x = box[0] - box[2] / 2
|
60 |
+
upper_left_y = box[1] - box[3] / 2
|
61 |
+
rect = patches.Rectangle(
|
62 |
+
(upper_left_x * width, upper_left_y * height),
|
63 |
+
box[2] * width,
|
64 |
+
box[3] * height,
|
65 |
+
linewidth=2,
|
66 |
+
edgecolor=colors[int(class_pred)],
|
67 |
+
facecolor="none",
|
68 |
+
)
|
69 |
+
# Add the patch to the Axes
|
70 |
+
ax.add_patch(rect)
|
71 |
+
plt.text(
|
72 |
+
upper_left_x * width,
|
73 |
+
upper_left_y * height,
|
74 |
+
s=class_labels[int(class_pred)],
|
75 |
+
color="white",
|
76 |
+
verticalalignment="top",
|
77 |
+
bbox={"color": colors[int(class_pred)], "pad": 0},
|
78 |
+
)
|
79 |
+
|
80 |
+
# plt.show()
|
81 |
+
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
|
82 |
+
ax.axis('off')
|
83 |
+
plt.savefig('inference.png')
|
84 |
+
|
85 |
+
|
86 |
+
# Inference function
|
87 |
+
def inference(inp_image):
|
88 |
+
inp_image=inp_image
|
89 |
+
org_image = inp_image
|
90 |
+
transform = test_transforms
|
91 |
+
x = transform(image=inp_image)["image"]
|
92 |
+
x=x.unsqueeze(0)
|
93 |
+
# Perform inference
|
94 |
+
device = "cpu"
|
95 |
+
model.to(device)
|
96 |
+
|
97 |
+
# Ensure model is in evaluation mode
|
98 |
+
model.eval()
|
99 |
+
|
100 |
+
# Perform inference
|
101 |
+
with torch.no_grad():
|
102 |
+
out = model(x)
|
103 |
+
#out = model(x)
|
104 |
+
|
105 |
+
# Ensure model is in evaluation mode
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
bboxes = [[] for _ in range(x.shape[0])]
|
110 |
+
|
111 |
+
for i in range(3):
|
112 |
+
batch_size, A, S, _, _ = out[i].shape
|
113 |
+
anchor = scaled_anchors[i]
|
114 |
+
boxes_scale_i = cells_to_bboxes(
|
115 |
+
out[i], anchor, S=S, is_preds=True
|
116 |
+
)
|
117 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
118 |
+
bboxes[idx] += box
|
119 |
+
|
120 |
+
nms_boxes = non_max_suppression(
|
121 |
+
bboxes[0], iou_threshold=0.5, threshold=0.6, box_format="midpoint",
|
122 |
+
)
|
123 |
+
|
124 |
+
# print(nms_boxes[0])
|
125 |
+
|
126 |
+
width_ratio = org_image.shape[1] / 416
|
127 |
+
height_ratio = org_image.shape[0] / 416
|
128 |
+
|
129 |
+
plot_image(org_image, nms_boxes)
|
130 |
+
plotted_img = 'inference.png'
|
131 |
+
return plotted_img
|
132 |
+
|
133 |
+
inputs = gr.inputs.Image(label="Original Image")
|
134 |
+
outputs = gr.outputs.Image(type="pil",label="Output Image")
|
135 |
+
title = "YOLOv3 model trained on PASCAL VOC Dataset"
|
136 |
+
description = "YOLOv3 object detection using Gradio demo"
|
137 |
+
examples = [['examples/car.jpg'], ['examples/home.jpg'],['examples/train.jpg'],['examples/train_persons.jpg']]
|
138 |
+
gr.Interface(inference, inputs, outputs, title=title, examples=examples, description=description, theme='xiaobaiyuan/theme_brief').launch(
|
139 |
+
debug=False)
|
config.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import albumentations as A
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
|
6 |
+
from albumentations.pytorch import ToTensorV2
|
7 |
+
#from utils import seed_everything
|
8 |
+
from pytorch_lightning import LightningModule, Trainer, seed_everything
|
9 |
+
DATASET = '/content/drive/MyDrive/sunandini/pascal/PASCAL_VOC'
|
10 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
seed_everything() # If you want deterministic behavior
|
12 |
+
NUM_WORKERS = os.cpu_count()-1
|
13 |
+
BATCH_SIZE = 32
|
14 |
+
IMAGE_SIZE = 416
|
15 |
+
NUM_CLASSES = 20
|
16 |
+
LEARNING_RATE = 1e-5
|
17 |
+
WEIGHT_DECAY = 1e-4
|
18 |
+
NUM_EPOCHS = 40
|
19 |
+
CONF_THRESHOLD = 0.05
|
20 |
+
MAP_IOU_THRESH = 0.5
|
21 |
+
NMS_IOU_THRESH = 0.45
|
22 |
+
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
|
23 |
+
PIN_MEMORY = True
|
24 |
+
LOAD_MODEL = False
|
25 |
+
SAVE_MODEL = True
|
26 |
+
CHECKPOINT_FILE = "checkpoint.pth.tar"
|
27 |
+
IMG_DIR = DATASET + "/images/"
|
28 |
+
LABEL_DIR = DATASET + "/labels/"
|
29 |
+
|
30 |
+
ANCHORS = [
|
31 |
+
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
|
32 |
+
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
|
33 |
+
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
|
34 |
+
] # Note these have been rescaled to be between [0, 1]
|
35 |
+
|
36 |
+
means = [0.485, 0.456, 0.406]
|
37 |
+
|
38 |
+
scale = 1.1
|
39 |
+
train_transforms = A.Compose(
|
40 |
+
[
|
41 |
+
A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)),
|
42 |
+
A.PadIfNeeded(
|
43 |
+
min_height=int(IMAGE_SIZE * scale),
|
44 |
+
min_width=int(IMAGE_SIZE * scale),
|
45 |
+
border_mode=cv2.BORDER_CONSTANT,
|
46 |
+
),
|
47 |
+
A.Rotate(limit = 10, interpolation=1, border_mode=4),
|
48 |
+
A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
|
49 |
+
A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
|
50 |
+
A.OneOf(
|
51 |
+
[
|
52 |
+
A.ShiftScaleRotate(
|
53 |
+
rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT
|
54 |
+
),
|
55 |
+
# A.Affine(shear=15, p=0.5, mode="constant"),
|
56 |
+
],
|
57 |
+
p=1.0,
|
58 |
+
),
|
59 |
+
A.HorizontalFlip(p=0.5),
|
60 |
+
A.Blur(p=0.1),
|
61 |
+
A.CLAHE(p=0.1),
|
62 |
+
A.Posterize(p=0.1),
|
63 |
+
A.ToGray(p=0.1),
|
64 |
+
A.ChannelShuffle(p=0.05),
|
65 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
66 |
+
ToTensorV2(),
|
67 |
+
],
|
68 |
+
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],),
|
69 |
+
)
|
70 |
+
test_transforms = A.Compose(
|
71 |
+
[
|
72 |
+
A.LongestMaxSize(max_size=IMAGE_SIZE),
|
73 |
+
A.PadIfNeeded(
|
74 |
+
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
|
75 |
+
),
|
76 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
77 |
+
ToTensorV2(),
|
78 |
+
],
|
79 |
+
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]),
|
80 |
+
)
|
81 |
+
|
82 |
+
PASCAL_CLASSES = [
|
83 |
+
"aeroplane",
|
84 |
+
"bicycle",
|
85 |
+
"bird",
|
86 |
+
"boat",
|
87 |
+
"bottle",
|
88 |
+
"bus",
|
89 |
+
"car",
|
90 |
+
"cat",
|
91 |
+
"chair",
|
92 |
+
"cow",
|
93 |
+
"diningtable",
|
94 |
+
"dog",
|
95 |
+
"horse",
|
96 |
+
"motorbike",
|
97 |
+
"person",
|
98 |
+
"pottedplant",
|
99 |
+
"sheep",
|
100 |
+
"sofa",
|
101 |
+
"train",
|
102 |
+
"tvmonitor"
|
103 |
+
]
|
dataloader.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Creates a Pytorch dataset to load the Pascal VOC & MS COCO datasets
|
3 |
+
"""
|
4 |
+
|
5 |
+
import config
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
import pandas as pd
|
9 |
+
import torch
|
10 |
+
from utils import xywhn2xyxy, xyxy2xywhn
|
11 |
+
import random
|
12 |
+
|
13 |
+
from PIL import Image, ImageFile
|
14 |
+
from torch.utils.data import Dataset, DataLoader
|
15 |
+
from utils import (
|
16 |
+
cells_to_bboxes,
|
17 |
+
iou_width_height as iou,
|
18 |
+
non_max_suppression as nms,
|
19 |
+
plot_image
|
20 |
+
)
|
21 |
+
|
22 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
23 |
+
|
24 |
+
class YOLODataset(Dataset):
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
csv_file,
|
28 |
+
img_dir,
|
29 |
+
label_dir,
|
30 |
+
anchors,
|
31 |
+
image_size=416,
|
32 |
+
S=[13, 26, 52],
|
33 |
+
C=20,
|
34 |
+
transform=None,
|
35 |
+
):
|
36 |
+
self.annotations = pd.read_csv(csv_file)
|
37 |
+
self.img_dir = img_dir
|
38 |
+
self.label_dir = label_dir
|
39 |
+
self.image_size = image_size
|
40 |
+
self.mosaic_border = [image_size // 2, image_size // 2]
|
41 |
+
self.transform = transform
|
42 |
+
self.S = S
|
43 |
+
self.anchors = torch.tensor(anchors[0] + anchors[1] + anchors[2]) # for all 3 scales
|
44 |
+
self.num_anchors = self.anchors.shape[0]
|
45 |
+
self.num_anchors_per_scale = self.num_anchors // 3
|
46 |
+
self.C = C
|
47 |
+
self.ignore_iou_thresh = 0.5
|
48 |
+
|
49 |
+
def __len__(self):
|
50 |
+
return len(self.annotations)
|
51 |
+
|
52 |
+
def load_mosaic(self, index):
|
53 |
+
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
|
54 |
+
labels4 = []
|
55 |
+
s = self.image_size
|
56 |
+
yc, xc = (int(random.uniform(x, 2 * s - x)) for x in self.mosaic_border) # mosaic center x, y
|
57 |
+
indices = [index] + random.choices(range(len(self)), k=3) # 3 additional image indices
|
58 |
+
random.shuffle(indices)
|
59 |
+
for i, index in enumerate(indices):
|
60 |
+
# Load image
|
61 |
+
label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
|
62 |
+
bboxes = np.roll(np.loadtxt(fname=label_path, delimiter=" ", ndmin=2), 4, axis=1).tolist()
|
63 |
+
img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
|
64 |
+
img = np.array(Image.open(img_path).convert("RGB"))
|
65 |
+
|
66 |
+
|
67 |
+
h, w = img.shape[0], img.shape[1]
|
68 |
+
labels = np.array(bboxes)
|
69 |
+
|
70 |
+
# place img in img4
|
71 |
+
if i == 0: # top left
|
72 |
+
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
73 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
74 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
75 |
+
elif i == 1: # top right
|
76 |
+
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
77 |
+
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
78 |
+
elif i == 2: # bottom left
|
79 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
80 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
81 |
+
elif i == 3: # bottom right
|
82 |
+
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
83 |
+
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
84 |
+
|
85 |
+
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
86 |
+
padw = x1a - x1b
|
87 |
+
padh = y1a - y1b
|
88 |
+
|
89 |
+
# Labels
|
90 |
+
if labels.size:
|
91 |
+
labels[:, :-1] = xywhn2xyxy(labels[:, :-1], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
92 |
+
labels4.append(labels)
|
93 |
+
|
94 |
+
# Concat/clip labels
|
95 |
+
labels4 = np.concatenate(labels4, 0)
|
96 |
+
for x in (labels4[:, :-1],):
|
97 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
98 |
+
# img4, labels4 = replicate(img4, labels4) # replicate
|
99 |
+
labels4[:, :-1] = xyxy2xywhn(labels4[:, :-1], 2 * s, 2 * s)
|
100 |
+
labels4[:, :-1] = np.clip(labels4[:, :-1], 0, 1)
|
101 |
+
labels4 = labels4[labels4[:, 2] > 0]
|
102 |
+
labels4 = labels4[labels4[:, 3] > 0]
|
103 |
+
return img4, labels4
|
104 |
+
|
105 |
+
def __getitem__(self, index):
|
106 |
+
|
107 |
+
image, bboxes = self.load_mosaic(index)
|
108 |
+
|
109 |
+
if self.transform:
|
110 |
+
augmentations = self.transform(image=image, bboxes=bboxes)
|
111 |
+
image = augmentations["image"]
|
112 |
+
bboxes = augmentations["bboxes"]
|
113 |
+
|
114 |
+
# Below assumes 3 scale predictions (as paper) and same num of anchors per scale
|
115 |
+
targets = [torch.zeros((self.num_anchors // 3, S, S, 6)) for S in self.S]
|
116 |
+
for box in bboxes:
|
117 |
+
iou_anchors = iou(torch.tensor(box[2:4]), self.anchors)
|
118 |
+
anchor_indices = iou_anchors.argsort(descending=True, dim=0)
|
119 |
+
x, y, width, height, class_label = box
|
120 |
+
has_anchor = [False] * 3 # each scale should have one anchor
|
121 |
+
for anchor_idx in anchor_indices:
|
122 |
+
scale_idx = anchor_idx // self.num_anchors_per_scale
|
123 |
+
anchor_on_scale = anchor_idx % self.num_anchors_per_scale
|
124 |
+
S = self.S[scale_idx]
|
125 |
+
i, j = int(S * y), int(S * x) # which cell
|
126 |
+
anchor_taken = targets[scale_idx][anchor_on_scale, i, j, 0]
|
127 |
+
if not anchor_taken and not has_anchor[scale_idx]:
|
128 |
+
targets[scale_idx][anchor_on_scale, i, j, 0] = 1
|
129 |
+
x_cell, y_cell = S * x - j, S * y - i # both between [0,1]
|
130 |
+
width_cell, height_cell = (
|
131 |
+
width * S,
|
132 |
+
height * S,
|
133 |
+
) # can be greater than 1 since it's relative to cell
|
134 |
+
box_coordinates = torch.tensor(
|
135 |
+
[x_cell, y_cell, width_cell, height_cell]
|
136 |
+
)
|
137 |
+
targets[scale_idx][anchor_on_scale, i, j, 1:5] = box_coordinates
|
138 |
+
targets[scale_idx][anchor_on_scale, i, j, 5] = int(class_label)
|
139 |
+
has_anchor[scale_idx] = True
|
140 |
+
|
141 |
+
elif not anchor_taken and iou_anchors[anchor_idx] > self.ignore_iou_thresh:
|
142 |
+
targets[scale_idx][anchor_on_scale, i, j, 0] = -1 # ignore prediction
|
143 |
+
|
144 |
+
return image, tuple(targets)
|
145 |
+
|
146 |
+
|
147 |
+
def test():
|
148 |
+
anchors = config.ANCHORS
|
149 |
+
|
150 |
+
transform = config.test_transforms
|
151 |
+
|
152 |
+
dataset = YOLODataset(
|
153 |
+
"COCO/train.csv",
|
154 |
+
"COCO/images/images/",
|
155 |
+
"COCO/labels/labels_new/",
|
156 |
+
S=[13, 26, 52],
|
157 |
+
anchors=anchors,
|
158 |
+
transform=transform,
|
159 |
+
)
|
160 |
+
S = [13, 26, 52]
|
161 |
+
scaled_anchors = torch.tensor(anchors) / (
|
162 |
+
1 / torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
163 |
+
)
|
164 |
+
loader = DataLoader(dataset=dataset, batch_size=1, shuffle=True)
|
165 |
+
for x, y in loader:
|
166 |
+
boxes = []
|
167 |
+
|
168 |
+
for i in range(y[0].shape[1]):
|
169 |
+
anchor = scaled_anchors[i]
|
170 |
+
print(anchor.shape)
|
171 |
+
print(y[i].shape)
|
172 |
+
boxes += cells_to_bboxes(
|
173 |
+
y[i], is_preds=False, S=y[i].shape[2], anchors=anchor
|
174 |
+
)[0]
|
175 |
+
boxes = nms(boxes, iou_threshold=1, threshold=0.7, box_format="midpoint")
|
176 |
+
print(boxes)
|
177 |
+
plot_image(x[0].permute(1, 2, 0).to("cpu"), boxes)
|
178 |
+
|
179 |
+
|
180 |
+
if __name__ == "__main__":
|
181 |
+
test()
|
dataset_org.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Creates a Pytorch dataset to load the Pascal VOC & MS COCO datasets
|
3 |
+
"""
|
4 |
+
|
5 |
+
import config
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
import pandas as pd
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from PIL import Image, ImageFile
|
12 |
+
from torch.utils.data import Dataset, DataLoader
|
13 |
+
from utils import (
|
14 |
+
cells_to_bboxes,
|
15 |
+
iou_width_height as iou,
|
16 |
+
non_max_suppression as nms,
|
17 |
+
plot_image
|
18 |
+
)
|
19 |
+
|
20 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
21 |
+
|
22 |
+
class YOLODataset(Dataset):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
csv_file,
|
26 |
+
img_dir,
|
27 |
+
label_dir,
|
28 |
+
anchors,
|
29 |
+
image_size=416,
|
30 |
+
S=[13, 26, 52],
|
31 |
+
C=20,
|
32 |
+
transform=None,
|
33 |
+
):
|
34 |
+
self.annotations = pd.read_csv(csv_file)
|
35 |
+
self.img_dir = img_dir
|
36 |
+
self.label_dir = label_dir
|
37 |
+
self.image_size = image_size
|
38 |
+
self.transform = transform
|
39 |
+
self.S = S
|
40 |
+
self.anchors = torch.tensor(anchors[0] + anchors[1] + anchors[2]) # for all 3 scales
|
41 |
+
self.num_anchors = self.anchors.shape[0]
|
42 |
+
self.num_anchors_per_scale = self.num_anchors // 3
|
43 |
+
self.C = C
|
44 |
+
self.ignore_iou_thresh = 0.5
|
45 |
+
|
46 |
+
def __len__(self):
|
47 |
+
return len(self.annotations)
|
48 |
+
|
49 |
+
def __getitem__(self, index):
|
50 |
+
label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
|
51 |
+
bboxes = np.roll(np.loadtxt(fname=label_path, delimiter=" ", ndmin=2), 4, axis=1).tolist()
|
52 |
+
img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
|
53 |
+
image = np.array(Image.open(img_path).convert("RGB"))
|
54 |
+
|
55 |
+
if self.transform:
|
56 |
+
augmentations = self.transform(image=image, bboxes=bboxes)
|
57 |
+
image = augmentations["image"]
|
58 |
+
bboxes = augmentations["bboxes"]
|
59 |
+
|
60 |
+
# Below assumes 3 scale predictions (as paper) and same num of anchors per scale
|
61 |
+
targets = [torch.zeros((self.num_anchors // 3, S, S, 6)) for S in self.S]
|
62 |
+
for box in bboxes:
|
63 |
+
iou_anchors = iou(torch.tensor(box[2:4]), self.anchors)
|
64 |
+
anchor_indices = iou_anchors.argsort(descending=True, dim=0)
|
65 |
+
x, y, width, height, class_label = box
|
66 |
+
has_anchor = [False] * 3 # each scale should have one anchor
|
67 |
+
for anchor_idx in anchor_indices:
|
68 |
+
scale_idx = anchor_idx // self.num_anchors_per_scale
|
69 |
+
anchor_on_scale = anchor_idx % self.num_anchors_per_scale
|
70 |
+
S = self.S[scale_idx]
|
71 |
+
i, j = int(S * y), int(S * x) # which cell
|
72 |
+
anchor_taken = targets[scale_idx][anchor_on_scale, i, j, 0]
|
73 |
+
if not anchor_taken and not has_anchor[scale_idx]:
|
74 |
+
targets[scale_idx][anchor_on_scale, i, j, 0] = 1
|
75 |
+
x_cell, y_cell = S * x - j, S * y - i # both between [0,1]
|
76 |
+
width_cell, height_cell = (
|
77 |
+
width * S,
|
78 |
+
height * S,
|
79 |
+
) # can be greater than 1 since it's relative to cell
|
80 |
+
box_coordinates = torch.tensor(
|
81 |
+
[x_cell, y_cell, width_cell, height_cell]
|
82 |
+
)
|
83 |
+
targets[scale_idx][anchor_on_scale, i, j, 1:5] = box_coordinates
|
84 |
+
targets[scale_idx][anchor_on_scale, i, j, 5] = int(class_label)
|
85 |
+
has_anchor[scale_idx] = True
|
86 |
+
|
87 |
+
elif not anchor_taken and iou_anchors[anchor_idx] > self.ignore_iou_thresh:
|
88 |
+
targets[scale_idx][anchor_on_scale, i, j, 0] = -1 # ignore prediction
|
89 |
+
|
90 |
+
return image, tuple(targets)
|
91 |
+
|
92 |
+
|
93 |
+
def test():
|
94 |
+
anchors = config.ANCHORS
|
95 |
+
|
96 |
+
transform = config.test_transforms
|
97 |
+
|
98 |
+
dataset = YOLODataset(
|
99 |
+
"COCO/train.csv",
|
100 |
+
"COCO/images/images/",
|
101 |
+
"COCO/labels/labels_new/",
|
102 |
+
S=[13, 26, 52],
|
103 |
+
anchors=anchors,
|
104 |
+
transform=transform,
|
105 |
+
)
|
106 |
+
S = [13, 26, 52]
|
107 |
+
scaled_anchors = torch.tensor(anchors) / (
|
108 |
+
1 / torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
109 |
+
)
|
110 |
+
loader = DataLoader(dataset=dataset, batch_size=1, shuffle=True)
|
111 |
+
for x, y in loader:
|
112 |
+
boxes = []
|
113 |
+
|
114 |
+
for i in range(y[0].shape[1]):
|
115 |
+
anchor = scaled_anchors[i]
|
116 |
+
print(anchor.shape)
|
117 |
+
print(y[i].shape)
|
118 |
+
boxes += cells_to_bboxes(
|
119 |
+
y[i], is_preds=False, S=y[i].shape[2], anchors=anchor
|
120 |
+
)[0]
|
121 |
+
boxes = nms(boxes, iou_threshold=1, threshold=0.7, box_format="midpoint")
|
122 |
+
print(boxes)
|
123 |
+
plot_image(x[0].permute(1, 2, 0).to("cpu"), boxes)
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
test()
|
gitattributes.txt
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
loss.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of Yolo Loss Function similar to the one in Yolov3 paper,
|
3 |
+
the difference from what I can tell is I use CrossEntropy for the classes
|
4 |
+
instead of BinaryCrossEntropy.
|
5 |
+
"""
|
6 |
+
import random
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from utils import intersection_over_union
|
11 |
+
|
12 |
+
|
13 |
+
class YoloLoss(nn.Module):
|
14 |
+
def __init__(self):
|
15 |
+
super().__init__()
|
16 |
+
self.mse = nn.MSELoss()
|
17 |
+
self.bce = nn.BCEWithLogitsLoss()
|
18 |
+
self.entropy = nn.CrossEntropyLoss()
|
19 |
+
self.sigmoid = nn.Sigmoid()
|
20 |
+
|
21 |
+
# Constants signifying how much to pay for each respective part of the loss
|
22 |
+
self.lambda_class = 1
|
23 |
+
self.lambda_noobj = 10
|
24 |
+
self.lambda_obj = 1
|
25 |
+
self.lambda_box = 10
|
26 |
+
|
27 |
+
def forward(self, predictions, target, anchors):
|
28 |
+
# Check where obj and noobj (we ignore if target == -1)
|
29 |
+
obj = target[..., 0] == 1 # in paper this is Iobj_i
|
30 |
+
noobj = target[..., 0] == 0 # in paper this is Inoobj_i
|
31 |
+
|
32 |
+
# ======================= #
|
33 |
+
# FOR NO OBJECT LOSS #
|
34 |
+
# ======================= #
|
35 |
+
|
36 |
+
no_object_loss = self.bce(
|
37 |
+
(predictions[..., 0:1][noobj]), (target[..., 0:1][noobj]),
|
38 |
+
)
|
39 |
+
|
40 |
+
# ==================== #
|
41 |
+
# FOR OBJECT LOSS #
|
42 |
+
# ==================== #
|
43 |
+
|
44 |
+
anchors = anchors.reshape(1, 3, 1, 1, 2)
|
45 |
+
box_preds = torch.cat([self.sigmoid(predictions[..., 1:3]), torch.exp(predictions[..., 3:5]) * anchors], dim=-1)
|
46 |
+
ious = intersection_over_union(box_preds[obj], target[..., 1:5][obj]).detach()
|
47 |
+
object_loss = self.mse(self.sigmoid(predictions[..., 0:1][obj]), ious * target[..., 0:1][obj])
|
48 |
+
|
49 |
+
# ======================== #
|
50 |
+
# FOR BOX COORDINATES #
|
51 |
+
# ======================== #
|
52 |
+
|
53 |
+
predictions[..., 1:3] = self.sigmoid(predictions[..., 1:3]) # x,y coordinates
|
54 |
+
target[..., 3:5] = torch.log(
|
55 |
+
(1e-16 + target[..., 3:5] / anchors)
|
56 |
+
) # width, height coordinates
|
57 |
+
box_loss = self.mse(predictions[..., 1:5][obj], target[..., 1:5][obj])
|
58 |
+
|
59 |
+
# ================== #
|
60 |
+
# FOR CLASS LOSS #
|
61 |
+
# ================== #
|
62 |
+
|
63 |
+
class_loss = self.entropy(
|
64 |
+
(predictions[..., 5:][obj]), (target[..., 5][obj].long()),
|
65 |
+
)
|
66 |
+
|
67 |
+
#print("__________________________________")
|
68 |
+
#print(self.lambda_box * box_loss)
|
69 |
+
#print(self.lambda_obj * object_loss)
|
70 |
+
#print(self.lambda_noobj * no_object_loss)
|
71 |
+
#print(self.lambda_class * class_loss)
|
72 |
+
#print("\n")
|
73 |
+
|
74 |
+
return (
|
75 |
+
self.lambda_box * box_loss
|
76 |
+
+ self.lambda_obj * object_loss
|
77 |
+
+ self.lambda_noobj * no_object_loss
|
78 |
+
+ self.lambda_class * class_loss
|
79 |
+
)
|
model.py
ADDED
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of YOLOv3 architecture
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import pytorch_lightning as pl
|
6 |
+
import pandas as pd
|
7 |
+
import seaborn as sn
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torchvision
|
12 |
+
from IPython.core.display import display
|
13 |
+
#from pl_bolts.datamodules import CIFAR10DataModule
|
14 |
+
#from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
|
15 |
+
from pytorch_lightning import LightningModule, Trainer, seed_everything
|
16 |
+
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
|
17 |
+
from pytorch_lightning.callbacks.progress import TQDMProgressBar
|
18 |
+
from pytorch_lightning.loggers import CSVLogger
|
19 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
20 |
+
from torchmetrics.functional import accuracy
|
21 |
+
import torch.cuda.amp as amp
|
22 |
+
from torch.utils.data import DataLoader
|
23 |
+
from loss import YoloLoss
|
24 |
+
from pytorch_lightning import LightningModule, Trainer
|
25 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
26 |
+
from torch_lr_finder import LRFinder
|
27 |
+
import torch.nn as nn
|
28 |
+
from dataset import YOLODataset
|
29 |
+
import config
|
30 |
+
import torch
|
31 |
+
import torch.optim as optim
|
32 |
+
import os
|
33 |
+
#from model import YOLOv3
|
34 |
+
from tqdm import tqdm
|
35 |
+
from utils import (
|
36 |
+
mean_average_precision,
|
37 |
+
cells_to_bboxes,
|
38 |
+
get_evaluation_bboxes,
|
39 |
+
save_checkpoint,
|
40 |
+
load_checkpoint,
|
41 |
+
check_class_accuracy,
|
42 |
+
get_loaders,
|
43 |
+
plot_couple_examples
|
44 |
+
)
|
45 |
+
from loss import YoloLoss
|
46 |
+
import warnings
|
47 |
+
from pytorch_lightning import LightningModule
|
48 |
+
import torch
|
49 |
+
from loss import YoloLoss
|
50 |
+
import torch.nn as nn
|
51 |
+
import config
|
52 |
+
"""
|
53 |
+
Information about architecture config:
|
54 |
+
Tuple is structured by (filters, kernel_size, stride)
|
55 |
+
Every conv is a same convolution.
|
56 |
+
List is structured by "B" indicating a residual block followed by the number of repeats
|
57 |
+
"S" is for scale prediction block and computing the yolo loss
|
58 |
+
"U" is for upsampling the feature map and concatenating with a previous layer
|
59 |
+
"""
|
60 |
+
config_1 = [
|
61 |
+
(32, 3, 1),
|
62 |
+
(64, 3, 2),
|
63 |
+
["B", 1],
|
64 |
+
(128, 3, 2),
|
65 |
+
["B", 2],
|
66 |
+
(256, 3, 2),
|
67 |
+
["B", 8],
|
68 |
+
(512, 3, 2),
|
69 |
+
["B", 8],
|
70 |
+
(1024, 3, 2),
|
71 |
+
["B", 4], # To this point is Darknet-53
|
72 |
+
(512, 1, 1),
|
73 |
+
(1024, 3, 1),
|
74 |
+
"S",
|
75 |
+
(256, 1, 1),
|
76 |
+
"U",
|
77 |
+
(256, 1, 1),
|
78 |
+
(512, 3, 1),
|
79 |
+
"S",
|
80 |
+
(128, 1, 1),
|
81 |
+
"U",
|
82 |
+
(128, 1, 1),
|
83 |
+
(256, 3, 1),
|
84 |
+
"S",
|
85 |
+
]
|
86 |
+
|
87 |
+
|
88 |
+
class CNNBlock(nn.Module):
|
89 |
+
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
|
90 |
+
super().__init__()
|
91 |
+
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
|
92 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
93 |
+
self.leaky = nn.LeakyReLU(0.1)
|
94 |
+
self.use_bn_act = bn_act
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
if self.use_bn_act:
|
98 |
+
return self.leaky(self.bn(self.conv(x)))
|
99 |
+
else:
|
100 |
+
return self.conv(x)
|
101 |
+
|
102 |
+
|
103 |
+
class ResidualBlock(nn.Module):
|
104 |
+
def __init__(self, channels, use_residual=True, num_repeats=1):
|
105 |
+
super().__init__()
|
106 |
+
self.layers = nn.ModuleList()
|
107 |
+
for repeat in range(num_repeats):
|
108 |
+
self.layers += [
|
109 |
+
nn.Sequential(
|
110 |
+
CNNBlock(channels, channels // 2, kernel_size=1),
|
111 |
+
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
|
112 |
+
)
|
113 |
+
]
|
114 |
+
|
115 |
+
self.use_residual = use_residual
|
116 |
+
self.num_repeats = num_repeats
|
117 |
+
|
118 |
+
def forward(self, x):
|
119 |
+
for layer in self.layers:
|
120 |
+
if self.use_residual:
|
121 |
+
x = x + layer(x)
|
122 |
+
else:
|
123 |
+
x = layer(x)
|
124 |
+
|
125 |
+
return x
|
126 |
+
|
127 |
+
|
128 |
+
class ScalePrediction(nn.Module):
|
129 |
+
def __init__(self, in_channels, num_classes):
|
130 |
+
super().__init__()
|
131 |
+
self.pred = nn.Sequential(
|
132 |
+
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
|
133 |
+
CNNBlock(
|
134 |
+
2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1
|
135 |
+
),
|
136 |
+
)
|
137 |
+
self.num_classes = num_classes
|
138 |
+
|
139 |
+
def forward(self, x):
|
140 |
+
return (
|
141 |
+
self.pred(x)
|
142 |
+
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3])
|
143 |
+
.permute(0, 1, 3, 4, 2)
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
class YOLOv3(LightningModule):
|
148 |
+
def __init__(self, in_channels=3, num_classes=80):
|
149 |
+
super().__init__()
|
150 |
+
self.num_classes = num_classes
|
151 |
+
self.in_channels = in_channels
|
152 |
+
self.layers = self._create_conv_layers()
|
153 |
+
|
154 |
+
def forward(self, x):
|
155 |
+
outputs = [] # for each scale
|
156 |
+
route_connections = []
|
157 |
+
for layer in self.layers:
|
158 |
+
if isinstance(layer, ScalePrediction):
|
159 |
+
outputs.append(layer(x))
|
160 |
+
continue
|
161 |
+
|
162 |
+
x = layer(x)
|
163 |
+
|
164 |
+
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
|
165 |
+
route_connections.append(x)
|
166 |
+
|
167 |
+
elif isinstance(layer, nn.Upsample):
|
168 |
+
x = torch.cat([x, route_connections[-1]], dim=1)
|
169 |
+
route_connections.pop()
|
170 |
+
|
171 |
+
return outputs
|
172 |
+
|
173 |
+
def _create_conv_layers(self):
|
174 |
+
layers = nn.ModuleList()
|
175 |
+
in_channels = self.in_channels
|
176 |
+
|
177 |
+
for module in config_1:
|
178 |
+
if isinstance(module, tuple):
|
179 |
+
out_channels, kernel_size, stride = module
|
180 |
+
layers.append(
|
181 |
+
CNNBlock(
|
182 |
+
in_channels,
|
183 |
+
out_channels,
|
184 |
+
kernel_size=kernel_size,
|
185 |
+
stride=stride,
|
186 |
+
padding=1 if kernel_size == 3 else 0,
|
187 |
+
)
|
188 |
+
)
|
189 |
+
in_channels = out_channels
|
190 |
+
|
191 |
+
elif isinstance(module, list):
|
192 |
+
num_repeats = module[1]
|
193 |
+
layers.append(ResidualBlock(in_channels, num_repeats=num_repeats,))
|
194 |
+
|
195 |
+
elif isinstance(module, str):
|
196 |
+
if module == "S":
|
197 |
+
layers += [
|
198 |
+
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
|
199 |
+
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
|
200 |
+
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
|
201 |
+
]
|
202 |
+
in_channels = in_channels // 2
|
203 |
+
|
204 |
+
elif module == "U":
|
205 |
+
layers.append(nn.Upsample(scale_factor=2),)
|
206 |
+
in_channels = in_channels * 3
|
207 |
+
|
208 |
+
return layers
|
209 |
+
|
210 |
+
class YoloVersion3(LightningModule):
|
211 |
+
def __init__(self):
|
212 |
+
super(YoloVersion3, self).__init__( )
|
213 |
+
self.save_hyperparameters()
|
214 |
+
# Set our init args as class attributes
|
215 |
+
self.learning_rate=config.LEARNING_RATE
|
216 |
+
#self.config=config
|
217 |
+
|
218 |
+
self.num_classes=config.NUM_CLASSES
|
219 |
+
self.train_csv=config.DATASET + "/train.csv"
|
220 |
+
self.test_csv=config.DATASET + "/test.csv"
|
221 |
+
|
222 |
+
self.loss_fn= YoloLoss()
|
223 |
+
self.scaler = amp.GradScaler()
|
224 |
+
#self.train_transform_function= config.train_transforms
|
225 |
+
#self.in_channels = 3
|
226 |
+
self.model= YOLOv3(num_classes=config.NUM_CLASSES).to(config.DEVICE)
|
227 |
+
self.scaled_anchors = (
|
228 |
+
torch.tensor(config.ANCHORS) * torch.tensor(config.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)).to(config.DEVICE)
|
229 |
+
#self.register_buffer("scaled_anchors", self.scaled_anchors)
|
230 |
+
self.training_step_outputs = []
|
231 |
+
|
232 |
+
def forward(self, x):
|
233 |
+
return self.model(x)
|
234 |
+
|
235 |
+
def training_step(self, batch, batch_idx):
|
236 |
+
x, y = batch
|
237 |
+
y0, y1, y2 = (
|
238 |
+
y[0],
|
239 |
+
y[1],
|
240 |
+
y[2],
|
241 |
+
)
|
242 |
+
out = self(x)
|
243 |
+
loss = (
|
244 |
+
self.loss_fn(out[0], y0, self.scaled_anchors[0])
|
245 |
+
+ self.loss_fn(out[1], y1, self.scaled_anchors[1])
|
246 |
+
+ self.loss_fn(out[2], y2, self.scaled_anchors[2])
|
247 |
+
)
|
248 |
+
self.log("train_loss", loss, on_epoch=True, prog_bar=True, logger=True) # Logging the training loss for visualization
|
249 |
+
self.training_step_outputs.append(loss)
|
250 |
+
return loss
|
251 |
+
|
252 |
+
def on_train_epoch_end(self):
|
253 |
+
|
254 |
+
print(f"\nCurrently epoch {self.current_epoch}")
|
255 |
+
train_epoch_average = torch.stack(self.training_step_outputs).mean()
|
256 |
+
self.training_step_outputs.clear()
|
257 |
+
print(f"Train loss {train_epoch_average}")
|
258 |
+
print("On Train Eval loader:")
|
259 |
+
print("On Train loader:")
|
260 |
+
class_accuracy, no_obj_accuracy, obj_accuracy = check_class_accuracy(self.model, self.train_loader, threshold=config.CONF_THRESHOLD)
|
261 |
+
self.log("class_accuracy", class_accuracy, on_epoch=True, prog_bar=True, logger=True)
|
262 |
+
self.log("no_obj_accuracy", no_obj_accuracy, on_epoch=True, prog_bar=True, logger=True)
|
263 |
+
self.log("obj_accuracy", obj_accuracy, on_epoch=True, prog_bar=True, logger=True)
|
264 |
+
|
265 |
+
if (self.current_epoch>0) and ((self.current_epoch+1) % 6 == 0): # for every 10 epochs we are plotting
|
266 |
+
plot_couple_examples(self.model, self.test_loader, 0.6, 0.5, self.scaled_anchors)
|
267 |
+
|
268 |
+
if (self.current_epoch>0) and (self.current_epoch+1 == self.trainer.max_epochs ): #map calculation across last epoch
|
269 |
+
check_class_accuracy(self.model, self.test_loader, threshold=config.CONF_THRESHOLD)
|
270 |
+
pred_boxes, true_boxes = get_evaluation_bboxes(
|
271 |
+
self.test_loader,
|
272 |
+
self.model,
|
273 |
+
iou_threshold=config.NMS_IOU_THRESH,
|
274 |
+
anchors=config.ANCHORS,
|
275 |
+
threshold=config.CONF_THRESHOLD,
|
276 |
+
)
|
277 |
+
mapval = mean_average_precision(
|
278 |
+
pred_boxes,
|
279 |
+
true_boxes,
|
280 |
+
iou_threshold=config.MAP_IOU_THRESH,
|
281 |
+
box_format="midpoint",
|
282 |
+
num_classes=config.NUM_CLASSES,
|
283 |
+
)
|
284 |
+
print(f"MAP: {mapval.item()}")
|
285 |
+
|
286 |
+
self.log("MAP", mapval.item(), on_epoch=True, prog_bar=True, logger=True)
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
def configure_optimizers(self):
|
291 |
+
optimizer = optim.Adam(
|
292 |
+
self.parameters(),
|
293 |
+
lr=config.LEARNING_RATE,
|
294 |
+
weight_decay=config.WEIGHT_DECAY,
|
295 |
+
)
|
296 |
+
|
297 |
+
self.trainer.fit_loop.setup_data()
|
298 |
+
dataloader = self.trainer.train_dataloader
|
299 |
+
|
300 |
+
EPOCHS = config.NUM_EPOCHS # 40 % of number of epochs
|
301 |
+
lr_scheduler = OneCycleLR(
|
302 |
+
optimizer,
|
303 |
+
max_lr=1E-3,
|
304 |
+
steps_per_epoch=len(dataloader),
|
305 |
+
epochs=EPOCHS,
|
306 |
+
pct_start=5/EPOCHS,
|
307 |
+
div_factor=100,
|
308 |
+
three_phase=False,
|
309 |
+
final_div_factor=100,
|
310 |
+
anneal_strategy='linear'
|
311 |
+
)
|
312 |
+
|
313 |
+
scheduler = {"scheduler": lr_scheduler, "interval" : "step"}
|
314 |
+
|
315 |
+
return [optimizer]
|
316 |
+
|
317 |
+
def setup(self, stage=None):
|
318 |
+
self.train_loader, self.test_loader, self.train_eval_loader = get_loaders(
|
319 |
+
train_csv_path=self.train_csv,
|
320 |
+
test_csv_path=self.test_csv,
|
321 |
+
)
|
322 |
+
|
323 |
+
def train_dataloader(self):
|
324 |
+
return self.train_loader
|
325 |
+
|
326 |
+
def val_dataloader(self):
|
327 |
+
return self.train_eval_loader
|
328 |
+
|
329 |
+
def test_dataloader(self):
|
330 |
+
return self.test_loader
|
331 |
+
# if __name__ == "__main__":
|
332 |
+
|
333 |
+
# model = YoloVersion3()
|
334 |
+
|
335 |
+
# checkpoint = ModelCheckpoint(filename='last_epoch', save_last=True)
|
336 |
+
# lr_rate_monitor = LearningRateMonitor(logging_interval="epoch")
|
337 |
+
# trainer = pl.Trainer(
|
338 |
+
# max_epochs=config.NUM_EPOCHS,
|
339 |
+
# deterministic=True,
|
340 |
+
# logger=True,
|
341 |
+
# default_root_dir="/content/drive/MyDrive/sunandini/Checkpoint/",
|
342 |
+
# callbacks=[lr_rate_monitor],
|
343 |
+
# enable_model_summary=False,
|
344 |
+
# log_every_n_steps=1,
|
345 |
+
# precision="16-mixed"
|
346 |
+
# )
|
347 |
+
# print("---- Training Started ---- Sunandini ----")
|
348 |
+
# trainer.fit(model)
|
349 |
+
# torch.save(model.state_dict(), 'YOLOv3.pth')
|
350 |
+
|
351 |
+
|
352 |
+
if __name__ == "__main__":
|
353 |
+
num_classes = 20
|
354 |
+
IMAGE_SIZE = 416
|
355 |
+
model = YOLOv3(num_classes=num_classes)
|
356 |
+
x = torch.randn((2, 3, IMAGE_SIZE, IMAGE_SIZE))
|
357 |
+
out = model(x)
|
358 |
+
assert model(x)[0].shape == (2, 3, IMAGE_SIZE//32, IMAGE_SIZE//32, num_classes + 5)
|
359 |
+
assert model(x)[1].shape == (2, 3, IMAGE_SIZE//16, IMAGE_SIZE//16, num_classes + 5)
|
360 |
+
assert model(x)[2].shape == (2, 3, IMAGE_SIZE//8, IMAGE_SIZE//8, num_classes + 5)
|
361 |
+
print("Success!")
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
albumentations
|
3 |
+
pytorch-lightning
|
4 |
+
torchvision
|
5 |
+
torch-lr-finder
|
6 |
+
grad-cam
|
7 |
+
pillow
|
8 |
+
numpy
|
9 |
+
gradio
|
10 |
+
seaborn
|
11 |
+
IPython
|
utils.py
ADDED
@@ -0,0 +1,584 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import config
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import matplotlib.patches as patches
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from collections import Counter
|
10 |
+
from torch.utils.data import DataLoader
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
|
14 |
+
def iou_width_height(boxes1, boxes2):
|
15 |
+
"""
|
16 |
+
Parameters:
|
17 |
+
boxes1 (tensor): width and height of the first bounding boxes
|
18 |
+
boxes2 (tensor): width and height of the second bounding boxes
|
19 |
+
Returns:
|
20 |
+
tensor: Intersection over union of the corresponding boxes
|
21 |
+
"""
|
22 |
+
intersection = torch.min(boxes1[..., 0], boxes2[..., 0]) * torch.min(
|
23 |
+
boxes1[..., 1], boxes2[..., 1]
|
24 |
+
)
|
25 |
+
union = (
|
26 |
+
boxes1[..., 0] * boxes1[..., 1] + boxes2[..., 0] * boxes2[..., 1] - intersection
|
27 |
+
)
|
28 |
+
return intersection / union
|
29 |
+
|
30 |
+
|
31 |
+
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
|
32 |
+
"""
|
33 |
+
Video explanation of this function:
|
34 |
+
https://youtu.be/XXYG5ZWtjj0
|
35 |
+
|
36 |
+
This function calculates intersection over union (iou) given pred boxes
|
37 |
+
and target boxes.
|
38 |
+
|
39 |
+
Parameters:
|
40 |
+
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
|
41 |
+
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
|
42 |
+
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
tensor: Intersection over union for all examples
|
46 |
+
"""
|
47 |
+
|
48 |
+
if box_format == "midpoint":
|
49 |
+
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
|
50 |
+
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
|
51 |
+
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
|
52 |
+
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
|
53 |
+
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
|
54 |
+
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
|
55 |
+
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
|
56 |
+
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
|
57 |
+
|
58 |
+
if box_format == "corners":
|
59 |
+
box1_x1 = boxes_preds[..., 0:1]
|
60 |
+
box1_y1 = boxes_preds[..., 1:2]
|
61 |
+
box1_x2 = boxes_preds[..., 2:3]
|
62 |
+
box1_y2 = boxes_preds[..., 3:4]
|
63 |
+
box2_x1 = boxes_labels[..., 0:1]
|
64 |
+
box2_y1 = boxes_labels[..., 1:2]
|
65 |
+
box2_x2 = boxes_labels[..., 2:3]
|
66 |
+
box2_y2 = boxes_labels[..., 3:4]
|
67 |
+
|
68 |
+
x1 = torch.max(box1_x1, box2_x1)
|
69 |
+
y1 = torch.max(box1_y1, box2_y1)
|
70 |
+
x2 = torch.min(box1_x2, box2_x2)
|
71 |
+
y2 = torch.min(box1_y2, box2_y2)
|
72 |
+
|
73 |
+
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
|
74 |
+
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
|
75 |
+
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
|
76 |
+
|
77 |
+
return intersection / (box1_area + box2_area - intersection + 1e-6)
|
78 |
+
|
79 |
+
|
80 |
+
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
|
81 |
+
"""
|
82 |
+
Video explanation of this function:
|
83 |
+
https://youtu.be/YDkjWEN8jNA
|
84 |
+
|
85 |
+
Does Non Max Suppression given bboxes
|
86 |
+
|
87 |
+
Parameters:
|
88 |
+
bboxes (list): list of lists containing all bboxes with each bboxes
|
89 |
+
specified as [class_pred, prob_score, x1, y1, x2, y2]
|
90 |
+
iou_threshold (float): threshold where predicted bboxes is correct
|
91 |
+
threshold (float): threshold to remove predicted bboxes (independent of IoU)
|
92 |
+
box_format (str): "midpoint" or "corners" used to specify bboxes
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
list: bboxes after performing NMS given a specific IoU threshold
|
96 |
+
"""
|
97 |
+
|
98 |
+
assert type(bboxes) == list
|
99 |
+
|
100 |
+
bboxes = [box for box in bboxes if box[1] > threshold]
|
101 |
+
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
|
102 |
+
bboxes_after_nms = []
|
103 |
+
|
104 |
+
while bboxes:
|
105 |
+
chosen_box = bboxes.pop(0)
|
106 |
+
|
107 |
+
bboxes = [
|
108 |
+
box
|
109 |
+
for box in bboxes
|
110 |
+
if box[0] != chosen_box[0]
|
111 |
+
or intersection_over_union(
|
112 |
+
torch.tensor(chosen_box[2:]),
|
113 |
+
torch.tensor(box[2:]),
|
114 |
+
box_format=box_format,
|
115 |
+
)
|
116 |
+
< iou_threshold
|
117 |
+
]
|
118 |
+
|
119 |
+
bboxes_after_nms.append(chosen_box)
|
120 |
+
|
121 |
+
return bboxes_after_nms
|
122 |
+
|
123 |
+
|
124 |
+
def mean_average_precision(
|
125 |
+
pred_boxes, true_boxes, iou_threshold=0.5, box_format="midpoint", num_classes=20
|
126 |
+
):
|
127 |
+
"""
|
128 |
+
Video explanation of this function:
|
129 |
+
https://youtu.be/FppOzcDvaDI
|
130 |
+
|
131 |
+
This function calculates mean average precision (mAP)
|
132 |
+
|
133 |
+
Parameters:
|
134 |
+
pred_boxes (list): list of lists containing all bboxes with each bboxes
|
135 |
+
specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
|
136 |
+
true_boxes (list): Similar as pred_boxes except all the correct ones
|
137 |
+
iou_threshold (float): threshold where predicted bboxes is correct
|
138 |
+
box_format (str): "midpoint" or "corners" used to specify bboxes
|
139 |
+
num_classes (int): number of classes
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
float: mAP value across all classes given a specific IoU threshold
|
143 |
+
"""
|
144 |
+
|
145 |
+
# list storing all AP for respective classes
|
146 |
+
average_precisions = []
|
147 |
+
|
148 |
+
# used for numerical stability later on
|
149 |
+
epsilon = 1e-6
|
150 |
+
|
151 |
+
for c in range(num_classes):
|
152 |
+
detections = []
|
153 |
+
ground_truths = []
|
154 |
+
|
155 |
+
# Go through all predictions and targets,
|
156 |
+
# and only add the ones that belong to the
|
157 |
+
# current class c
|
158 |
+
for detection in pred_boxes:
|
159 |
+
if detection[1] == c:
|
160 |
+
detections.append(detection)
|
161 |
+
|
162 |
+
for true_box in true_boxes:
|
163 |
+
if true_box[1] == c:
|
164 |
+
ground_truths.append(true_box)
|
165 |
+
|
166 |
+
# find the amount of bboxes for each training example
|
167 |
+
# Counter here finds how many ground truth bboxes we get
|
168 |
+
# for each training example, so let's say img 0 has 3,
|
169 |
+
# img 1 has 5 then we will obtain a dictionary with:
|
170 |
+
# amount_bboxes = {0:3, 1:5}
|
171 |
+
amount_bboxes = Counter([gt[0] for gt in ground_truths])
|
172 |
+
|
173 |
+
# We then go through each key, val in this dictionary
|
174 |
+
# and convert to the following (w.r.t same example):
|
175 |
+
# ammount_bboxes = {0:torch.tensor[0,0,0], 1:torch.tensor[0,0,0,0,0]}
|
176 |
+
for key, val in amount_bboxes.items():
|
177 |
+
amount_bboxes[key] = torch.zeros(val)
|
178 |
+
|
179 |
+
# sort by box probabilities which is index 2
|
180 |
+
detections.sort(key=lambda x: x[2], reverse=True)
|
181 |
+
TP = torch.zeros((len(detections)))
|
182 |
+
FP = torch.zeros((len(detections)))
|
183 |
+
total_true_bboxes = len(ground_truths)
|
184 |
+
|
185 |
+
# If none exists for this class then we can safely skip
|
186 |
+
if total_true_bboxes == 0:
|
187 |
+
continue
|
188 |
+
|
189 |
+
for detection_idx, detection in enumerate(detections):
|
190 |
+
# Only take out the ground_truths that have the same
|
191 |
+
# training idx as detection
|
192 |
+
ground_truth_img = [
|
193 |
+
bbox for bbox in ground_truths if bbox[0] == detection[0]
|
194 |
+
]
|
195 |
+
|
196 |
+
num_gts = len(ground_truth_img)
|
197 |
+
best_iou = 0
|
198 |
+
|
199 |
+
for idx, gt in enumerate(ground_truth_img):
|
200 |
+
iou = intersection_over_union(
|
201 |
+
torch.tensor(detection[3:]),
|
202 |
+
torch.tensor(gt[3:]),
|
203 |
+
box_format=box_format,
|
204 |
+
)
|
205 |
+
|
206 |
+
if iou > best_iou:
|
207 |
+
best_iou = iou
|
208 |
+
best_gt_idx = idx
|
209 |
+
|
210 |
+
if best_iou > iou_threshold:
|
211 |
+
# only detect ground truth detection once
|
212 |
+
if amount_bboxes[detection[0]][best_gt_idx] == 0:
|
213 |
+
# true positive and add this bounding box to seen
|
214 |
+
TP[detection_idx] = 1
|
215 |
+
amount_bboxes[detection[0]][best_gt_idx] = 1
|
216 |
+
else:
|
217 |
+
FP[detection_idx] = 1
|
218 |
+
|
219 |
+
# if IOU is lower then the detection is a false positive
|
220 |
+
else:
|
221 |
+
FP[detection_idx] = 1
|
222 |
+
|
223 |
+
TP_cumsum = torch.cumsum(TP, dim=0)
|
224 |
+
FP_cumsum = torch.cumsum(FP, dim=0)
|
225 |
+
recalls = TP_cumsum / (total_true_bboxes + epsilon)
|
226 |
+
precisions = TP_cumsum / (TP_cumsum + FP_cumsum + epsilon)
|
227 |
+
precisions = torch.cat((torch.tensor([1]), precisions))
|
228 |
+
recalls = torch.cat((torch.tensor([0]), recalls))
|
229 |
+
# torch.trapz for numerical integration
|
230 |
+
average_precisions.append(torch.trapz(precisions, recalls))
|
231 |
+
|
232 |
+
return sum(average_precisions) / len(average_precisions)
|
233 |
+
|
234 |
+
|
235 |
+
def plot_image(image, boxes):
|
236 |
+
"""Plots predicted bounding boxes on the image"""
|
237 |
+
cmap = plt.get_cmap("tab20b")
|
238 |
+
class_labels = config.COCO_LABELS if config.DATASET=='COCO' else config.PASCAL_CLASSES
|
239 |
+
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
|
240 |
+
im = np.array(image)
|
241 |
+
height, width, _ = im.shape
|
242 |
+
|
243 |
+
# Create figure and axes
|
244 |
+
fig, ax = plt.subplots(1)
|
245 |
+
# Display the image
|
246 |
+
ax.imshow(im)
|
247 |
+
|
248 |
+
# box[0] is x midpoint, box[2] is width
|
249 |
+
# box[1] is y midpoint, box[3] is height
|
250 |
+
|
251 |
+
# Create a Rectangle patch
|
252 |
+
for box in boxes:
|
253 |
+
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
|
254 |
+
class_pred = box[0]
|
255 |
+
box = box[2:]
|
256 |
+
upper_left_x = box[0] - box[2] / 2
|
257 |
+
upper_left_y = box[1] - box[3] / 2
|
258 |
+
rect = patches.Rectangle(
|
259 |
+
(upper_left_x * width, upper_left_y * height),
|
260 |
+
box[2] * width,
|
261 |
+
box[3] * height,
|
262 |
+
linewidth=2,
|
263 |
+
edgecolor=colors[int(class_pred)],
|
264 |
+
facecolor="none",
|
265 |
+
)
|
266 |
+
# Add the patch to the Axes
|
267 |
+
ax.add_patch(rect)
|
268 |
+
plt.text(
|
269 |
+
upper_left_x * width,
|
270 |
+
upper_left_y * height,
|
271 |
+
s=class_labels[int(class_pred)],
|
272 |
+
color="white",
|
273 |
+
verticalalignment="top",
|
274 |
+
bbox={"color": colors[int(class_pred)], "pad": 0},
|
275 |
+
)
|
276 |
+
|
277 |
+
plt.show()
|
278 |
+
|
279 |
+
|
280 |
+
def get_evaluation_bboxes(
|
281 |
+
loader,
|
282 |
+
model,
|
283 |
+
iou_threshold,
|
284 |
+
anchors,
|
285 |
+
threshold,
|
286 |
+
box_format="midpoint",
|
287 |
+
device="cuda",
|
288 |
+
):
|
289 |
+
# make sure model is in eval before get bboxes
|
290 |
+
model.eval()
|
291 |
+
train_idx = 0
|
292 |
+
all_pred_boxes = []
|
293 |
+
all_true_boxes = []
|
294 |
+
for batch_idx, (x, labels) in enumerate(loader):
|
295 |
+
x = x.to(device)
|
296 |
+
|
297 |
+
with torch.no_grad():
|
298 |
+
predictions = model(x)
|
299 |
+
|
300 |
+
batch_size = x.shape[0]
|
301 |
+
bboxes = [[] for _ in range(batch_size)]
|
302 |
+
for i in range(3):
|
303 |
+
S = predictions[i].shape[2]
|
304 |
+
anchor = torch.tensor([*anchors[i]]).to(device) * S
|
305 |
+
boxes_scale_i = cells_to_bboxes(
|
306 |
+
predictions[i], anchor, S=S, is_preds=True
|
307 |
+
)
|
308 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
309 |
+
bboxes[idx] += box
|
310 |
+
|
311 |
+
# we just want one bbox for each label, not one for each scale
|
312 |
+
true_bboxes = cells_to_bboxes(
|
313 |
+
labels[2], anchor, S=S, is_preds=False
|
314 |
+
)
|
315 |
+
|
316 |
+
for idx in range(batch_size):
|
317 |
+
nms_boxes = non_max_suppression(
|
318 |
+
bboxes[idx],
|
319 |
+
iou_threshold=iou_threshold,
|
320 |
+
threshold=threshold,
|
321 |
+
box_format=box_format,
|
322 |
+
)
|
323 |
+
|
324 |
+
for nms_box in nms_boxes:
|
325 |
+
all_pred_boxes.append([train_idx] + nms_box)
|
326 |
+
|
327 |
+
for box in true_bboxes[idx]:
|
328 |
+
if box[1] > threshold:
|
329 |
+
all_true_boxes.append([train_idx] + box)
|
330 |
+
|
331 |
+
train_idx += 1
|
332 |
+
|
333 |
+
model.train()
|
334 |
+
return all_pred_boxes, all_true_boxes
|
335 |
+
|
336 |
+
|
337 |
+
def cells_to_bboxes(predictions, anchors, S, is_preds=True):
|
338 |
+
"""
|
339 |
+
Scales the predictions coming from the model to
|
340 |
+
be relative to the entire image such that they for example later
|
341 |
+
can be plotted or.
|
342 |
+
INPUT:
|
343 |
+
predictions: tensor of size (N, 3, S, S, num_classes+5)
|
344 |
+
anchors: the anchors used for the predictions
|
345 |
+
S: the number of cells the image is divided in on the width (and height)
|
346 |
+
is_preds: whether the input is predictions or the true bounding boxes
|
347 |
+
OUTPUT:
|
348 |
+
converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
|
349 |
+
object score, bounding box coordinates
|
350 |
+
"""
|
351 |
+
BATCH_SIZE = predictions.shape[0]
|
352 |
+
num_anchors = len(anchors)
|
353 |
+
box_predictions = predictions[..., 1:5]
|
354 |
+
if is_preds:
|
355 |
+
anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
|
356 |
+
box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
|
357 |
+
box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
|
358 |
+
scores = torch.sigmoid(predictions[..., 0:1])
|
359 |
+
best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1)
|
360 |
+
else:
|
361 |
+
scores = predictions[..., 0:1]
|
362 |
+
best_class = predictions[..., 5:6]
|
363 |
+
|
364 |
+
cell_indices = (
|
365 |
+
torch.arange(S)
|
366 |
+
.repeat(predictions.shape[0], 3, S, 1)
|
367 |
+
.unsqueeze(-1)
|
368 |
+
.to(predictions.device)
|
369 |
+
)
|
370 |
+
x = 1 / S * (box_predictions[..., 0:1] + cell_indices)
|
371 |
+
y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4))
|
372 |
+
w_h = 1 / S * box_predictions[..., 2:4]
|
373 |
+
converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6)
|
374 |
+
return converted_bboxes.tolist()
|
375 |
+
|
376 |
+
def check_class_accuracy(model, loader, threshold):
|
377 |
+
model.eval()
|
378 |
+
tot_class_preds, correct_class = 0, 0
|
379 |
+
tot_noobj, correct_noobj = 0, 0
|
380 |
+
tot_obj, correct_obj = 0, 0
|
381 |
+
|
382 |
+
for idx, (x, y) in enumerate(loader):
|
383 |
+
x = x.to(config.DEVICE)
|
384 |
+
with torch.no_grad():
|
385 |
+
out = model(x)
|
386 |
+
|
387 |
+
for i in range(3):
|
388 |
+
y[i] = y[i].to(config.DEVICE)
|
389 |
+
obj = y[i][..., 0] == 1 # in paper this is Iobj_i
|
390 |
+
noobj = y[i][..., 0] == 0 # in paper this is Iobj_i
|
391 |
+
|
392 |
+
correct_class += torch.sum(
|
393 |
+
torch.argmax(out[i][..., 5:][obj], dim=-1) == y[i][..., 5][obj]
|
394 |
+
)
|
395 |
+
tot_class_preds += torch.sum(obj)
|
396 |
+
|
397 |
+
obj_preds = torch.sigmoid(out[i][..., 0]) > threshold
|
398 |
+
correct_obj += torch.sum(obj_preds[obj] == y[i][..., 0][obj])
|
399 |
+
tot_obj += torch.sum(obj)
|
400 |
+
correct_noobj += torch.sum(obj_preds[noobj] == y[i][..., 0][noobj])
|
401 |
+
tot_noobj += torch.sum(noobj)
|
402 |
+
|
403 |
+
print(f"Class accuracy is: {(correct_class/(tot_class_preds+1e-16))*100:2f}%")
|
404 |
+
print(f"No obj accuracy is: {(correct_noobj/(tot_noobj+1e-16))*100:2f}%")
|
405 |
+
print(f"Obj accuracy is: {(correct_obj/(tot_obj+1e-16))*100:2f}%")
|
406 |
+
model.train()
|
407 |
+
|
408 |
+
return (correct_class/(tot_class_preds+1e-16))*100, (correct_noobj/(tot_noobj+1e-16))*100, (correct_obj/(tot_obj+1e-16))*100
|
409 |
+
|
410 |
+
|
411 |
+
def get_mean_std(loader):
|
412 |
+
# var[X] = E[X**2] - E[X]**2
|
413 |
+
channels_sum, channels_sqrd_sum, num_batches = 0, 0, 0
|
414 |
+
|
415 |
+
for data, _ in loader:
|
416 |
+
channels_sum += torch.mean(data, dim=[0, 2, 3])
|
417 |
+
channels_sqrd_sum += torch.mean(data ** 2, dim=[0, 2, 3])
|
418 |
+
num_batches += 1
|
419 |
+
|
420 |
+
mean = channels_sum / num_batches
|
421 |
+
std = (channels_sqrd_sum / num_batches - mean ** 2) ** 0.5
|
422 |
+
|
423 |
+
return mean, std
|
424 |
+
|
425 |
+
|
426 |
+
def save_checkpoint(model, optimizer, filename="my_checkpoint.pth.tar"):
|
427 |
+
print("=> Saving checkpoint")
|
428 |
+
checkpoint = {
|
429 |
+
"state_dict": model.state_dict(),
|
430 |
+
"optimizer": optimizer.state_dict(),
|
431 |
+
}
|
432 |
+
torch.save(checkpoint, filename)
|
433 |
+
|
434 |
+
|
435 |
+
def load_checkpoint(checkpoint_file, model, optimizer, lr):
|
436 |
+
print("=> Loading checkpoint")
|
437 |
+
checkpoint = torch.load(checkpoint_file, map_location=config.DEVICE)
|
438 |
+
model.load_state_dict(checkpoint["state_dict"])
|
439 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
440 |
+
|
441 |
+
# If we don't do this then it will just have learning rate of old checkpoint
|
442 |
+
# and it will lead to many hours of debugging \:
|
443 |
+
for param_group in optimizer.param_groups:
|
444 |
+
param_group["lr"] = lr
|
445 |
+
|
446 |
+
|
447 |
+
def get_loaders(train_csv_path, test_csv_path):
|
448 |
+
from dataset import YOLODataset
|
449 |
+
|
450 |
+
IMAGE_SIZE = config.IMAGE_SIZE
|
451 |
+
train_dataset = YOLODataset(
|
452 |
+
train_csv_path,
|
453 |
+
transform=config.train_transforms,
|
454 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
455 |
+
img_dir=config.IMG_DIR,
|
456 |
+
label_dir=config.LABEL_DIR,
|
457 |
+
anchors=config.ANCHORS,
|
458 |
+
)
|
459 |
+
test_dataset = YOLODataset(
|
460 |
+
test_csv_path,
|
461 |
+
transform=config.test_transforms,
|
462 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
463 |
+
img_dir=config.IMG_DIR,
|
464 |
+
label_dir=config.LABEL_DIR,
|
465 |
+
anchors=config.ANCHORS,
|
466 |
+
)
|
467 |
+
train_loader = DataLoader(
|
468 |
+
dataset=train_dataset,
|
469 |
+
batch_size=config.BATCH_SIZE,
|
470 |
+
num_workers=config.NUM_WORKERS,
|
471 |
+
pin_memory=config.PIN_MEMORY,
|
472 |
+
shuffle=True,
|
473 |
+
drop_last=False,
|
474 |
+
)
|
475 |
+
test_loader = DataLoader(
|
476 |
+
dataset=test_dataset,
|
477 |
+
batch_size=config.BATCH_SIZE,
|
478 |
+
num_workers=config.NUM_WORKERS,
|
479 |
+
pin_memory=config.PIN_MEMORY,
|
480 |
+
shuffle=False,
|
481 |
+
drop_last=False,
|
482 |
+
)
|
483 |
+
|
484 |
+
train_eval_dataset = YOLODataset(
|
485 |
+
train_csv_path,
|
486 |
+
transform=config.test_transforms,
|
487 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
488 |
+
img_dir=config.IMG_DIR,
|
489 |
+
label_dir=config.LABEL_DIR,
|
490 |
+
anchors=config.ANCHORS,
|
491 |
+
)
|
492 |
+
train_eval_loader = DataLoader(
|
493 |
+
dataset=train_eval_dataset,
|
494 |
+
batch_size=config.BATCH_SIZE,
|
495 |
+
num_workers=config.NUM_WORKERS,
|
496 |
+
pin_memory=config.PIN_MEMORY,
|
497 |
+
shuffle=False,
|
498 |
+
drop_last=False,
|
499 |
+
)
|
500 |
+
|
501 |
+
return train_loader, test_loader, train_eval_loader
|
502 |
+
|
503 |
+
def plot_couple_examples(model, loader, thresh, iou_thresh, anchors):
|
504 |
+
model.eval()
|
505 |
+
x, y = next(iter(loader))
|
506 |
+
x = x.to("cuda")
|
507 |
+
with torch.no_grad():
|
508 |
+
out = model(x)
|
509 |
+
bboxes = [[] for _ in range(x.shape[0])]
|
510 |
+
for i in range(3):
|
511 |
+
batch_size, A, S, _, _ = out[i].shape
|
512 |
+
anchor = anchors[i]
|
513 |
+
boxes_scale_i = cells_to_bboxes(
|
514 |
+
out[i], anchor, S=S, is_preds=True
|
515 |
+
)
|
516 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
517 |
+
bboxes[idx] += box
|
518 |
+
|
519 |
+
model.train()
|
520 |
+
|
521 |
+
for i in range(batch_size//4):
|
522 |
+
nms_boxes = non_max_suppression(
|
523 |
+
bboxes[i], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
|
524 |
+
)
|
525 |
+
plot_image(x[i].permute(1,2,0).detach().cpu(), nms_boxes)
|
526 |
+
|
527 |
+
|
528 |
+
|
529 |
+
def seed_everything(seed=42):
|
530 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
531 |
+
random.seed(seed)
|
532 |
+
np.random.seed(seed)
|
533 |
+
torch.manual_seed(seed)
|
534 |
+
torch.cuda.manual_seed(seed)
|
535 |
+
torch.cuda.manual_seed_all(seed)
|
536 |
+
torch.backends.cudnn.deterministic = True
|
537 |
+
torch.backends.cudnn.benchmark = False
|
538 |
+
|
539 |
+
|
540 |
+
def clip_coords(boxes, img_shape):
|
541 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
542 |
+
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
543 |
+
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
544 |
+
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
545 |
+
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
546 |
+
|
547 |
+
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
548 |
+
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
549 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
550 |
+
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
|
551 |
+
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
|
552 |
+
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
|
553 |
+
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
|
554 |
+
return y
|
555 |
+
|
556 |
+
|
557 |
+
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
558 |
+
# Convert normalized segments into pixel segments, shape (n,2)
|
559 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
560 |
+
y[..., 0] = w * x[..., 0] + padw # top left x
|
561 |
+
y[..., 1] = h * x[..., 1] + padh # top left y
|
562 |
+
return y
|
563 |
+
|
564 |
+
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
565 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
|
566 |
+
if clip:
|
567 |
+
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
|
568 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
569 |
+
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
|
570 |
+
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
|
571 |
+
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
|
572 |
+
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
|
573 |
+
return y
|
574 |
+
|
575 |
+
def clip_boxes(boxes, shape):
|
576 |
+
# Clip boxes (xyxy) to image shape (height, width)
|
577 |
+
if isinstance(boxes, torch.Tensor): # faster individually
|
578 |
+
boxes[..., 0].clamp_(0, shape[1]) # x1
|
579 |
+
boxes[..., 1].clamp_(0, shape[0]) # y1
|
580 |
+
boxes[..., 2].clamp_(0, shape[1]) # x2
|
581 |
+
boxes[..., 3].clamp_(0, shape[0]) # y2
|
582 |
+
else: # np.array (faster grouped)
|
583 |
+
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
|
584 |
+
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
|