SmolLM-Instruct / app.py
vilarin's picture
Update app.py
c6b6986 verified
import os
import time
#import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
MODEL_LIST = ["HuggingFaceTB/SmolLM-1.7B-Instruct", "HuggingFaceTB/SmolLM-135M-Instruct", "HuggingFaceTB/SmolLM-360M-Instruct"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
TITLE = "<h1><center>SmolLM-Instruct</center></h1>"
PLACEHOLDER = """
<center>
<p>SmolLM is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 1.7B parameters.</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
# pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cpu" # for GPU usage or "cpu" for CPU usage
tokenizer0 = AutoTokenizer.from_pretrained(MODEL_LIST[0])
model0 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[0]).to(device)
tokenizer1 = AutoTokenizer.from_pretrained(MODEL_LIST[1])
model1 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[1]).to(device)
tokenizer2 = AutoTokenizer.from_pretrained(MODEL_LIST[2])
model2 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[2]).to(device)
#@spaces.GPU()
def stream_chat(
message: str,
history: list,
temperature: float = 0.8,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
choice: str = "135M"
):
print(f'message: {message}')
print(f'history: {history}')
conversation = []
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
if choice == "1.7B":
tokenizer = tokenizer0
model = model0
elif choice == "135M":
model = model1
tokenizer = tokenizer1
else:
model = model2
tokenizer = tokenizer2
input_text=tokenizer.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens = max_new_tokens,
do_sample = False if temperature == 0 else True,
top_p = top_p,
top_k = top_k,
temperature = temperature,
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
#print(tokenizer.decode(outputs[0]))
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
gr.Radio(
["135M", "360M", "1.7B"],
value="135M",
label="Load Model",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()