File size: 27,533 Bytes
9984001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
import os
from typing import List
from typing import Union

import openai
import tiktoken
from dotenv import load_dotenv
from icecream import ic
from langchain_text_splitters import RecursiveCharacterTextSplitter


load_dotenv()  # read local .env file
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

MAX_TOKENS_PER_CHUNK = (
    1000  # if text is more than this many tokens, we'll break it up into
)
# discrete chunks to translate one chunk at a time


def get_completion(

    prompt: str,

    system_message: str = "You are a helpful assistant.",

    model: str = "gpt-4-turbo",

    temperature: float = 0.3,

    json_mode: bool = False,

) -> Union[str, dict]:
    """

        Generate a completion using the OpenAI API.



    Args:

        prompt (str): The user's prompt or query.

        system_message (str, optional): The system message to set the context for the assistant.

            Defaults to "You are a helpful assistant.".

        model (str, optional): The name of the OpenAI model to use for generating the completion.

            Defaults to "gpt-4-turbo".

        temperature (float, optional): The sampling temperature for controlling the randomness of the generated text.

            Defaults to 0.3.

        json_mode (bool, optional): Whether to return the response in JSON format.

            Defaults to False.



    Returns:

        Union[str, dict]: The generated completion.

            If json_mode is True, returns the complete API response as a dictionary.

            If json_mode is False, returns the generated text as a string.

    """

    if json_mode:
        response = client.chat.completions.create(
            model=model,
            temperature=temperature,
            top_p=1,
            response_format={"type": "json_object"},
            messages=[
                {"role": "system", "content": system_message},
                {"role": "user", "content": prompt},
            ],
        )
        return response.choices[0].message.content
    else:
        response = client.chat.completions.create(
            model=model,
            temperature=temperature,
            top_p=1,
            messages=[
                {"role": "system", "content": system_message},
                {"role": "user", "content": prompt},
            ],
        )
        return response.choices[0].message.content


def one_chunk_initial_translation(

    source_lang: str, target_lang: str, source_text: str

) -> str:
    """

    Translate the entire text as one chunk using an LLM.



    Args:

        source_lang (str): The source language of the text.

        target_lang (str): The target language for translation.

        source_text (str): The text to be translated.



    Returns:

        str: The translated text.

    """

    system_message = f"You are an expert linguist, specializing in translation from {source_lang} to {target_lang}."

    translation_prompt = f"""This is an {source_lang} to {target_lang} translation, please provide the {target_lang} translation for this text. \

Do not provide any explanations or text apart from the translation.

{source_lang}: {source_text}



{target_lang}:"""

    prompt = translation_prompt.format(source_text=source_text)

    translation = get_completion(prompt, system_message=system_message)

    return translation


def one_chunk_reflect_on_translation(

    source_lang: str,

    target_lang: str,

    source_text: str,

    translation_1: str,

    country: str = "",

) -> str:
    """

    Use an LLM to reflect on the translation, treating the entire text as one chunk.



    Args:

        source_lang (str): The source language of the text.

        target_lang (str): The target language of the translation.

        source_text (str): The original text in the source language.

        translation_1 (str): The initial translation of the source text.

        country (str): Country specified for target language.



    Returns:

        str: The LLM's reflection on the translation, providing constructive criticism and suggestions for improvement.

    """

    system_message = f"You are an expert linguist specializing in translation from {source_lang} to {target_lang}. \

You will be provided with a source text and its translation and your goal is to improve the translation."

    if country != "":
        reflection_prompt = f"""Your task is to carefully read a source text and a translation from {source_lang} to {target_lang}, and then give constructive criticism and helpful suggestions to improve the translation. \

The final style and tone of the translation should match the style of {target_lang} colloquially spoken in {country}.



The source text and initial translation, delimited by XML tags <SOURCE_TEXT></SOURCE_TEXT> and <TRANSLATION></TRANSLATION>, are as follows:



<SOURCE_TEXT>

{source_text}

</SOURCE_TEXT>



<TRANSLATION>

{translation_1}

</TRANSLATION>



When writing suggestions, pay attention to whether there are ways to improve the translation's \n\

(i) accuracy (by correcting errors of addition, mistranslation, omission, or untranslated text),\n\

(ii) fluency (by applying {target_lang} grammar, spelling and punctuation rules, and ensuring there are no unnecessary repetitions),\n\

(iii) style (by ensuring the translations reflect the style of the source text and takes into account any cultural context),\n\

(iv) terminology (by ensuring terminology use is consistent and reflects the source text domain; and by only ensuring you use equivalent idioms {target_lang}).\n\



Write a list of specific, helpful and constructive suggestions for improving the translation.

Each suggestion should address one specific part of the translation.

Output only the suggestions and nothing else."""

    else:
        reflection_prompt = f"""Your task is to carefully read a source text and a translation from {source_lang} to {target_lang}, and then give constructive criticism and helpful suggestions to improve the translation. \



The source text and initial translation, delimited by XML tags <SOURCE_TEXT></SOURCE_TEXT> and <TRANSLATION></TRANSLATION>, are as follows:



<SOURCE_TEXT>

{source_text}

</SOURCE_TEXT>



<TRANSLATION>

{translation_1}

</TRANSLATION>



When writing suggestions, pay attention to whether there are ways to improve the translation's \n\

(i) accuracy (by correcting errors of addition, mistranslation, omission, or untranslated text),\n\

(ii) fluency (by applying {target_lang} grammar, spelling and punctuation rules, and ensuring there are no unnecessary repetitions),\n\

(iii) style (by ensuring the translations reflect the style of the source text and takes into account any cultural context),\n\

(iv) terminology (by ensuring terminology use is consistent and reflects the source text domain; and by only ensuring you use equivalent idioms {target_lang}).\n\



Write a list of specific, helpful and constructive suggestions for improving the translation.

Each suggestion should address one specific part of the translation.

Output only the suggestions and nothing else."""

    prompt = reflection_prompt.format(
        source_lang=source_lang,
        target_lang=target_lang,
        source_text=source_text,
        translation_1=translation_1,
    )
    reflection = get_completion(prompt, system_message=system_message)
    return reflection


def one_chunk_improve_translation(

    source_lang: str,

    target_lang: str,

    source_text: str,

    translation_1: str,

    reflection: str,

) -> str:
    """

    Use the reflection to improve the translation, treating the entire text as one chunk.



    Args:

        source_lang (str): The source language of the text.

        target_lang (str): The target language for the translation.

        source_text (str): The original text in the source language.

        translation_1 (str): The initial translation of the source text.

        reflection (str): Expert suggestions and constructive criticism for improving the translation.



    Returns:

        str: The improved translation based on the expert suggestions.

    """

    system_message = f"You are an expert linguist, specializing in translation editing from {source_lang} to {target_lang}."

    prompt = f"""Your task is to carefully read, then edit, a translation from {source_lang} to {target_lang}, taking into

account a list of expert suggestions and constructive criticisms.



The source text, the initial translation, and the expert linguist suggestions are delimited by XML tags <SOURCE_TEXT></SOURCE_TEXT>, <TRANSLATION></TRANSLATION> and <EXPERT_SUGGESTIONS></EXPERT_SUGGESTIONS> \

as follows:



<SOURCE_TEXT>

{source_text}

</SOURCE_TEXT>



<TRANSLATION>

{translation_1}

</TRANSLATION>



<EXPERT_SUGGESTIONS>

{reflection}

</EXPERT_SUGGESTIONS>



Please take into account the expert suggestions when editing the translation. Edit the translation by ensuring:



(i) accuracy (by correcting errors of addition, mistranslation, omission, or untranslated text),

(ii) fluency (by applying {target_lang} grammar, spelling and punctuation rules and ensuring there are no unnecessary repetitions), \

(iii) style (by ensuring the translations reflect the style of the source text)

(iv) terminology (inappropriate for context, inconsistent use), or

(v) other errors.



Output only the new translation and nothing else."""

    translation_2 = get_completion(prompt, system_message)

    return translation_2


def one_chunk_translate_text(

    source_lang: str, target_lang: str, source_text: str, country: str = ""

) -> str:
    """

    Translate a single chunk of text from the source language to the target language.



    This function performs a two-step translation process:

    1. Get an initial translation of the source text.

    2. Reflect on the initial translation and generate an improved translation.



    Args:

        source_lang (str): The source language of the text.

        target_lang (str): The target language for the translation.

        source_text (str): The text to be translated.

        country (str): Country specified for target language.

    Returns:

        str: The improved translation of the source text.

    """
    translation_1 = one_chunk_initial_translation(
        source_lang, target_lang, source_text
    )

    reflection = one_chunk_reflect_on_translation(
        source_lang, target_lang, source_text, translation_1, country
    )
    translation_2 = one_chunk_improve_translation(
        source_lang, target_lang, source_text, translation_1, reflection
    )

    return translation_2


def num_tokens_in_string(

    input_str: str, encoding_name: str = "cl100k_base"

) -> int:
    """

    Calculate the number of tokens in a given string using a specified encoding.



    Args:

        str (str): The input string to be tokenized.

        encoding_name (str, optional): The name of the encoding to use. Defaults to "cl100k_base",

            which is the most commonly used encoder (used by GPT-4).



    Returns:

        int: The number of tokens in the input string.



    Example:

        >>> text = "Hello, how are you?"

        >>> num_tokens = num_tokens_in_string(text)

        >>> print(num_tokens)

        5

    """
    encoding = tiktoken.get_encoding(encoding_name)
    num_tokens = len(encoding.encode(input_str))
    return num_tokens


def multichunk_initial_translation(

    source_lang: str, target_lang: str, source_text_chunks: List[str]

) -> List[str]:
    """

    Translate a text in multiple chunks from the source language to the target language.



    Args:

        source_lang (str): The source language of the text.

        target_lang (str): The target language for translation.

        source_text_chunks (List[str]): A list of text chunks to be translated.



    Returns:

        List[str]: A list of translated text chunks.

    """

    system_message = f"You are an expert linguist, specializing in translation from {source_lang} to {target_lang}."

    translation_prompt = """Your task is provide a professional translation from {source_lang} to {target_lang} of PART of a text.



The source text is below, delimited by XML tags <SOURCE_TEXT> and </SOURCE_TEXT>. Translate only the part within the source text

delimited by <TRANSLATE_THIS> and </TRANSLATE_THIS>. You can use the rest of the source text as context, but do not translate any

of the other text. Do not output anything other than the translation of the indicated part of the text.



<SOURCE_TEXT>

{tagged_text}

</SOURCE_TEXT>



To reiterate, you should translate only this part of the text, shown here again between <TRANSLATE_THIS> and </TRANSLATE_THIS>:

<TRANSLATE_THIS>

{chunk_to_translate}

</TRANSLATE_THIS>



Output only the translation of the portion you are asked to translate, and nothing else.

"""

    translation_chunks = []
    for i in range(len(source_text_chunks)):
        # Will translate chunk i
        tagged_text = (
            "".join(source_text_chunks[0:i])
            + "<TRANSLATE_THIS>"
            + source_text_chunks[i]
            + "</TRANSLATE_THIS>"
            + "".join(source_text_chunks[i + 1 :])
        )

        prompt = translation_prompt.format(
            source_lang=source_lang,
            target_lang=target_lang,
            tagged_text=tagged_text,
            chunk_to_translate=source_text_chunks[i],
        )

        translation = get_completion(prompt, system_message=system_message)
        translation_chunks.append(translation)

    return translation_chunks


def multichunk_reflect_on_translation(

    source_lang: str,

    target_lang: str,

    source_text_chunks: List[str],

    translation_1_chunks: List[str],

    country: str = "",

) -> List[str]:
    """

    Provides constructive criticism and suggestions for improving a partial translation.



    Args:

        source_lang (str): The source language of the text.

        target_lang (str): The target language of the translation.

        source_text_chunks (List[str]): The source text divided into chunks.

        translation_1_chunks (List[str]): The translated chunks corresponding to the source text chunks.

        country (str): Country specified for target language.



    Returns:

        List[str]: A list of reflections containing suggestions for improving each translated chunk.

    """

    system_message = f"You are an expert linguist specializing in translation from {source_lang} to {target_lang}. \

You will be provided with a source text and its translation and your goal is to improve the translation."

    if country != "":
        reflection_prompt = """Your task is to carefully read a source text and part of a translation of that text from {source_lang} to {target_lang}, and then give constructive criticism and helpful suggestions for improving the translation.

The final style and tone of the translation should match the style of {target_lang} colloquially spoken in {country}.



The source text is below, delimited by XML tags <SOURCE_TEXT> and </SOURCE_TEXT>, and the part that has been translated

is delimited by <TRANSLATE_THIS> and </TRANSLATE_THIS> within the source text. You can use the rest of the source text

as context for critiquing the translated part.



<SOURCE_TEXT>

{tagged_text}

</SOURCE_TEXT>



To reiterate, only part of the text is being translated, shown here again between <TRANSLATE_THIS> and </TRANSLATE_THIS>:

<TRANSLATE_THIS>

{chunk_to_translate}

</TRANSLATE_THIS>



The translation of the indicated part, delimited below by <TRANSLATION> and </TRANSLATION>, is as follows:

<TRANSLATION>

{translation_1_chunk}

</TRANSLATION>



When writing suggestions, pay attention to whether there are ways to improve the translation's:\n\

(i) accuracy (by correcting errors of addition, mistranslation, omission, or untranslated text),\n\

(ii) fluency (by applying {target_lang} grammar, spelling and punctuation rules, and ensuring there are no unnecessary repetitions),\n\

(iii) style (by ensuring the translations reflect the style of the source text and takes into account any cultural context),\n\

(iv) terminology (by ensuring terminology use is consistent and reflects the source text domain; and by only ensuring you use equivalent idioms {target_lang}).\n\



Write a list of specific, helpful and constructive suggestions for improving the translation.

Each suggestion should address one specific part of the translation.

Output only the suggestions and nothing else."""

    else:
        reflection_prompt = """Your task is to carefully read a source text and part of a translation of that text from {source_lang} to {target_lang}, and then give constructive criticism and helpful suggestions for improving the translation.



The source text is below, delimited by XML tags <SOURCE_TEXT> and </SOURCE_TEXT>, and the part that has been translated

is delimited by <TRANSLATE_THIS> and </TRANSLATE_THIS> within the source text. You can use the rest of the source text

as context for critiquing the translated part.



<SOURCE_TEXT>

{tagged_text}

</SOURCE_TEXT>



To reiterate, only part of the text is being translated, shown here again between <TRANSLATE_THIS> and </TRANSLATE_THIS>:

<TRANSLATE_THIS>

{chunk_to_translate}

</TRANSLATE_THIS>



The translation of the indicated part, delimited below by <TRANSLATION> and </TRANSLATION>, is as follows:

<TRANSLATION>

{translation_1_chunk}

</TRANSLATION>



When writing suggestions, pay attention to whether there are ways to improve the translation's:\n\

(i) accuracy (by correcting errors of addition, mistranslation, omission, or untranslated text),\n\

(ii) fluency (by applying {target_lang} grammar, spelling and punctuation rules, and ensuring there are no unnecessary repetitions),\n\

(iii) style (by ensuring the translations reflect the style of the source text and takes into account any cultural context),\n\

(iv) terminology (by ensuring terminology use is consistent and reflects the source text domain; and by only ensuring you use equivalent idioms {target_lang}).\n\



Write a list of specific, helpful and constructive suggestions for improving the translation.

Each suggestion should address one specific part of the translation.

Output only the suggestions and nothing else."""

    reflection_chunks = []
    for i in range(len(source_text_chunks)):
        # Will translate chunk i
        tagged_text = (
            "".join(source_text_chunks[0:i])
            + "<TRANSLATE_THIS>"
            + source_text_chunks[i]
            + "</TRANSLATE_THIS>"
            + "".join(source_text_chunks[i + 1 :])
        )
        if country != "":
            prompt = reflection_prompt.format(
                source_lang=source_lang,
                target_lang=target_lang,
                tagged_text=tagged_text,
                chunk_to_translate=source_text_chunks[i],
                translation_1_chunk=translation_1_chunks[i],
                country=country,
            )
        else:
            prompt = reflection_prompt.format(
                source_lang=source_lang,
                target_lang=target_lang,
                tagged_text=tagged_text,
                chunk_to_translate=source_text_chunks[i],
                translation_1_chunk=translation_1_chunks[i],
            )

        reflection = get_completion(prompt, system_message=system_message)
        reflection_chunks.append(reflection)

    return reflection_chunks


def multichunk_improve_translation(

    source_lang: str,

    target_lang: str,

    source_text_chunks: List[str],

    translation_1_chunks: List[str],

    reflection_chunks: List[str],

) -> List[str]:
    """

    Improves the translation of a text from source language to target language by considering expert suggestions.



    Args:

        source_lang (str): The source language of the text.

        target_lang (str): The target language for translation.

        source_text_chunks (List[str]): The source text divided into chunks.

        translation_1_chunks (List[str]): The initial translation of each chunk.

        reflection_chunks (List[str]): Expert suggestions for improving each translated chunk.



    Returns:

        List[str]: The improved translation of each chunk.

    """

    system_message = f"You are an expert linguist, specializing in translation editing from {source_lang} to {target_lang}."

    improvement_prompt = """Your task is to carefully read, then improve, a translation from {source_lang} to {target_lang}, taking into

account a set of expert suggestions and constructive criticisms. Below, the source text, initial translation, and expert suggestions are provided.



The source text is below, delimited by XML tags <SOURCE_TEXT> and </SOURCE_TEXT>, and the part that has been translated

is delimited by <TRANSLATE_THIS> and </TRANSLATE_THIS> within the source text. You can use the rest of the source text

as context, but need to provide a translation only of the part indicated by <TRANSLATE_THIS> and </TRANSLATE_THIS>.



<SOURCE_TEXT>

{tagged_text}

</SOURCE_TEXT>



To reiterate, only part of the text is being translated, shown here again between <TRANSLATE_THIS> and </TRANSLATE_THIS>:

<TRANSLATE_THIS>

{chunk_to_translate}

</TRANSLATE_THIS>



The translation of the indicated part, delimited below by <TRANSLATION> and </TRANSLATION>, is as follows:

<TRANSLATION>

{translation_1_chunk}

</TRANSLATION>



The expert translations of the indicated part, delimited below by <EXPERT_SUGGESTIONS> and </EXPERT_SUGGESTIONS>, is as follows:

<EXPERT_SUGGESTIONS>

{reflection_chunk}

</EXPERT_SUGGESTIONS>



Taking into account the expert suggestions rewrite the translation to improve it, paying attention

to whether there are ways to improve the translation's



(i) accuracy (by correcting errors of addition, mistranslation, omission, or untranslated text),

(ii) fluency (by applying {target_lang} grammar, spelling and punctuation rules and ensuring there are no unnecessary repetitions), \

(iii) style (by ensuring the translations reflect the style of the source text)

(iv) terminology (inappropriate for context, inconsistent use), or

(v) other errors.



Output only the new translation of the indicated part and nothing else."""

    translation_2_chunks = []
    for i in range(len(source_text_chunks)):
        # Will translate chunk i
        tagged_text = (
            "".join(source_text_chunks[0:i])
            + "<TRANSLATE_THIS>"
            + source_text_chunks[i]
            + "</TRANSLATE_THIS>"
            + "".join(source_text_chunks[i + 1 :])
        )

        prompt = improvement_prompt.format(
            source_lang=source_lang,
            target_lang=target_lang,
            tagged_text=tagged_text,
            chunk_to_translate=source_text_chunks[i],
            translation_1_chunk=translation_1_chunks[i],
            reflection_chunk=reflection_chunks[i],
        )

        translation_2 = get_completion(prompt, system_message=system_message)
        translation_2_chunks.append(translation_2)

    return translation_2_chunks


def multichunk_translation(

    source_lang, target_lang, source_text_chunks, country: str = ""

):
    """

    Improves the translation of multiple text chunks based on the initial translation and reflection.



    Args:

        source_lang (str): The source language of the text chunks.

        target_lang (str): The target language for translation.

        source_text_chunks (List[str]): The list of source text chunks to be translated.

        translation_1_chunks (List[str]): The list of initial translations for each source text chunk.

        reflection_chunks (List[str]): The list of reflections on the initial translations.

        country (str): Country specified for target language

    Returns:

        List[str]: The list of improved translations for each source text chunk.

    """

    translation_1_chunks = multichunk_initial_translation(
        source_lang, target_lang, source_text_chunks
    )

    reflection_chunks = multichunk_reflect_on_translation(
        source_lang,
        target_lang,
        source_text_chunks,
        translation_1_chunks,
        country,
    )

    translation_2_chunks = multichunk_improve_translation(
        source_lang,
        target_lang,
        source_text_chunks,
        translation_1_chunks,
        reflection_chunks,
    )

    return translation_2_chunks


def calculate_chunk_size(token_count: int, token_limit: int) -> int:
    """

    Calculate the chunk size based on the token count and token limit.



    Args:

        token_count (int): The total number of tokens.

        token_limit (int): The maximum number of tokens allowed per chunk.



    Returns:

        int: The calculated chunk size.



    Description:

        This function calculates the chunk size based on the given token count and token limit.

        If the token count is less than or equal to the token limit, the function returns the token count as the chunk size.

        Otherwise, it calculates the number of chunks needed to accommodate all the tokens within the token limit.

        The chunk size is determined by dividing the token limit by the number of chunks.

        If there are remaining tokens after dividing the token count by the token limit,

        the chunk size is adjusted by adding the remaining tokens divided by the number of chunks.



    Example:

        >>> calculate_chunk_size(1000, 500)

        500

        >>> calculate_chunk_size(1530, 500)

        389

        >>> calculate_chunk_size(2242, 500)

        496

    """

    if token_count <= token_limit:
        return token_count

    num_chunks = (token_count + token_limit - 1) // token_limit
    chunk_size = token_count // num_chunks

    remaining_tokens = token_count % token_limit
    if remaining_tokens > 0:
        chunk_size += remaining_tokens // num_chunks

    return chunk_size


def translate(

    source_lang,

    target_lang,

    source_text,

    country,

    max_tokens=MAX_TOKENS_PER_CHUNK,

):
    """Translate the source_text from source_lang to target_lang."""

    num_tokens_in_text = num_tokens_in_string(source_text)

    ic(num_tokens_in_text)

    if num_tokens_in_text < max_tokens:
        ic("Translating text as single chunk")

        final_translation = one_chunk_translate_text(
            source_lang, target_lang, source_text, country
        )

        return final_translation

    else:
        ic("Translating text as multiple chunks")

        token_size = calculate_chunk_size(
            token_count=num_tokens_in_text, token_limit=max_tokens
        )

        ic(token_size)

        text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
            model_name="gpt-4",
            chunk_size=token_size,
            chunk_overlap=0,
        )

        source_text_chunks = text_splitter.split_text(source_text)

        translation_2_chunks = multichunk_translation(
            source_lang, target_lang, source_text_chunks, country
        )

        return "".join(translation_2_chunks)