vilarin's picture
Upload 12 files
783d533 verified
raw
history blame
4.89 kB
# a monkey patch to use llama-index completion
import os
from typing import Union
import src.translation_agent.utils as utils
from llama_index.llms.groq import Groq
from llama_index.llms.cohere import Cohere
from llama_index.llms.openai import OpenAI
from llama_index.llms.together import TogetherLLM
from llama_index.llms.ollama import Ollama
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.core import Settings
from llama_index.core.llms import ChatMessage
# Add your LLMs here
def model_load(
endpoint: str,
model: str,
api_key: str = None,
context_window: int = 4096,
num_output: int = 512,
):
if endpoint == "Groq":
llm = Groq(
model=model,
api_key=api_key if api_key else os.getenv("GROQ_API_KEY"),
)
elif endpoint == "Cohere":
llm = Cohere(
model=model,
api_key=api_key if api_key else os.getenv("COHERE_API_KEY"),
)
elif endpoint == "OpenAI":
llm = OpenAI(
model=model,
api_key=api_key if api_key else os.getenv("OPENAI_API_KEY"),
)
elif endpoint == "TogetherAI":
llm = TogetherLLM(
model=model,
api_key=api_key if api_key else os.getenv("TOGETHER_API_KEY"),
)
elif endpoint == "Ollama":
llm = Ollama(
model=model,
request_timeout=120.0)
elif endpoint == "Huggingface":
llm = HuggingFaceInferenceAPI(
model_name=model,
token=api_key if api_key else os.getenv("HF_TOKEN"),
task="text-generation",
)
Settings.llm = llm
# maximum input size to the LLM
Settings.context_window = context_window
# number of tokens reserved for text generation.
Settings.num_output = num_output
def get_completion(
prompt: str,
system_message: str = "You are a helpful assistant.",
temperature: float = 0.3,
json_mode: bool = False,
) -> Union[str, dict]:
"""
Generate a completion using the OpenAI API.
Args:
prompt (str): The user's prompt or query.
system_message (str, optional): The system message to set the context for the assistant.
Defaults to "You are a helpful assistant.".
temperature (float, optional): The sampling temperature for controlling the randomness of the generated text.
Defaults to 0.3.
json_mode (bool, optional): Whether to return the response in JSON format.
Defaults to False.
Returns:
Union[str, dict]: The generated completion.
If json_mode is True, returns the complete API response as a dictionary.
If json_mode is False, returns the generated text as a string.
"""
llm = Settings.llm
if llm.class_name() == "HuggingFaceInferenceAPI":
llm.system_prompt = system_message
messages = [
ChatMessage(
role="user", content=prompt),
]
response = llm.chat(
messages=messages,
temperature=temperature,
top_p=1,
)
return response.message.content
else:
messages = [
ChatMessage(
role="system", content=system_message),
ChatMessage(
role="user", content=prompt),
]
if json_mode:
response = llm.chat(
temperature=temperature,
top_p=1,
response_format={"type": "json_object"},
messages=messages,
)
return response.message.content
else:
response = llm.chat(
temperature=temperature,
top_p=1,
messages=messages,
)
return response.message.content
utils.get_completion = get_completion
one_chunk_initial_translation = utils.one_chunk_initial_translation
one_chunk_reflect_on_translation = utils.one_chunk_reflect_on_translation
one_chunk_improve_translation = utils.one_chunk_improve_translation
one_chunk_translate_text = utils.one_chunk_translate_text
num_tokens_in_string = utils.num_tokens_in_string
multichunk_initial_translation = utils.multichunk_initial_translation
multichunk_reflect_on_translation = utils.multichunk_reflect_on_translation
multichunk_improve_translation = utils.multichunk_improve_translation
multichunk_translation = utils.multichunk_translation
calculate_chunk_size =utils.calculate_chunk_size