Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,12 @@ import torch
|
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
-
from transformers import
|
6 |
import os
|
7 |
|
8 |
|
9 |
|
10 |
-
|
11 |
-
MODEL_LIST = ["openbmb/MiniCPM-Llama3-V-2_5","openbmb/MiniCPM-Llama3-V-2_5-int4"]
|
12 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
13 |
MODEL_ID = os.environ.get("MODEL_ID")
|
14 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
@@ -28,7 +27,8 @@ CSS = """
|
|
28 |
|
29 |
model = AutoModel.from_pretrained(
|
30 |
MODEL_ID,
|
31 |
-
torch_dtype=torch.
|
|
|
32 |
trust_remote_code=True
|
33 |
).to(0)
|
34 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
@@ -36,45 +36,48 @@ model.eval()
|
|
36 |
|
37 |
|
38 |
@spaces.GPU()
|
39 |
-
def stream_chat(message, history: list, temperature: float,
|
40 |
print(f'message is - {message}')
|
41 |
print(f'history is - {history}')
|
42 |
conversation = []
|
43 |
if message["files"]:
|
44 |
image = Image.open(message["files"][-1]).convert('RGB')
|
45 |
-
conversation.append({"role": "user", "content": message['text']})
|
46 |
else:
|
47 |
if len(history) == 0:
|
48 |
raise gr.Error("Please upload an image first.")
|
49 |
image = None
|
50 |
else:
|
51 |
-
image = Image.open(history[0][
|
52 |
for prompt, answer in history:
|
53 |
if answer is None:
|
54 |
conversation.extend([{"role": "user", "content": prompt},{"role": "assistant", "content": ""}])
|
55 |
else:
|
56 |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
57 |
-
conversation.append({"role": "user", "content": message['text']})
|
58 |
print(f"Conversation is -\n{conversation}")
|
59 |
|
|
|
|
|
|
|
60 |
generate_kwargs = dict(
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
64 |
temperature=temperature,
|
65 |
-
|
66 |
-
tokenizer=tokenizer,
|
67 |
-
stream=True
|
68 |
)
|
69 |
-
|
70 |
-
generate_kwargs["sampling"] = False
|
71 |
-
|
72 |
-
response = model.chat(**generate_kwargs)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
|
@@ -117,7 +120,7 @@ with gr.Blocks(css=CSS) as demo:
|
|
117 |
maximum=4096,
|
118 |
step=1,
|
119 |
value=1024,
|
120 |
-
label="Max
|
121 |
render=False,
|
122 |
),
|
123 |
],
|
|
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
import os
|
7 |
|
8 |
|
9 |
|
10 |
+
MODEL_LIST = ["THUDM/glm-4v-9b"]
|
|
|
11 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
12 |
MODEL_ID = os.environ.get("MODEL_ID")
|
13 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
|
|
27 |
|
28 |
model = AutoModel.from_pretrained(
|
29 |
MODEL_ID,
|
30 |
+
torch_dtype=torch.bfloat16,
|
31 |
+
low_cpu_mem_usage=True,
|
32 |
trust_remote_code=True
|
33 |
).to(0)
|
34 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
|
|
36 |
|
37 |
|
38 |
@spaces.GPU()
|
39 |
+
def stream_chat(message, history: list, temperature: float, max_length: int):
|
40 |
print(f'message is - {message}')
|
41 |
print(f'history is - {history}')
|
42 |
conversation = []
|
43 |
if message["files"]:
|
44 |
image = Image.open(message["files"][-1]).convert('RGB')
|
45 |
+
conversation.append({"role": "user", "image": image, "content": message['text']})
|
46 |
else:
|
47 |
if len(history) == 0:
|
48 |
raise gr.Error("Please upload an image first.")
|
49 |
image = None
|
50 |
else:
|
51 |
+
image = Image.open(history[0][1])
|
52 |
for prompt, answer in history:
|
53 |
if answer is None:
|
54 |
conversation.extend([{"role": "user", "content": prompt},{"role": "assistant", "content": ""}])
|
55 |
else:
|
56 |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
57 |
+
conversation.append({"role": "user", "image": image, "content": message['text']})
|
58 |
print(f"Conversation is -\n{conversation}")
|
59 |
|
60 |
+
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
|
61 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
62 |
+
|
63 |
generate_kwargs = dict(
|
64 |
+
max_length=max_length,
|
65 |
+
streamer=streamer,
|
66 |
+
do_sample=True,
|
67 |
+
top_k=1,
|
68 |
temperature=temperature,
|
69 |
+
repetition_penalty=1.2,
|
|
|
|
|
70 |
)
|
71 |
+
gen_kwargs = {**input_ids, **generate_kwargs}
|
|
|
|
|
|
|
72 |
|
73 |
+
with torch.no_grad():
|
74 |
+
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
75 |
+
thread.start()
|
76 |
+
buffer = ""
|
77 |
+
for new_text in streamer:
|
78 |
+
buffer += new_text
|
79 |
+
yield buffer
|
80 |
+
|
81 |
|
82 |
|
83 |
|
|
|
120 |
maximum=4096,
|
121 |
step=1,
|
122 |
value=1024,
|
123 |
+
label="Max Length",
|
124 |
render=False,
|
125 |
),
|
126 |
],
|