import subprocess
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
from threading import Thread
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
import os
import time
from huggingface_hub import hf_hub_download
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]
TITLE = "
VL-Chatbox
"
DESCRIPTION = "MODEL: " + MODEL_NAME + "
"
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(0)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
eos_token_id=processor.tokenizer.eos_token_id
@spaces.GPU(queue=False)
def stream_chat(message, history: list, temperature: float, max_new_tokens: int):
print(message)
conversation = []
for prompt, answer in history:
conversation.extend([{"role": "user", "content": f"<|image_1|>\n{prompt}"}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message['text']})
if message["files"]:
image = Image.open(message["files"][-1]).convert('RGB')
else:
if len(history) == 0:
gr.Error("Please upload an image first.")
image = None
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = processor(prompt, images=image, return_tensors="pt").to(0)
generate_kwargs = dict(
max_new_tokens=max_new_tokens,
temperature=temperature,
do_sample=True,
eos_token_id=eos_token_id,
)
if temperature == 0:
generate_kwargs["do_sample"] = False
generate_kwargs = {**inputs, **generate_kwargs}
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=450)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_types=["image"],
placeholder="Enter message or upload file...",
show_label=False,
)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
examples=[[{"text": "What is on the desk?", "files": ["./laptop.jpg"]}],
[{"text": "Where it is?", "files": ["./hotel.jpg"]}],
[{"text": "Can yo describe this image?", "files": ["./spacecat.png"]}]],
textbox=chat_input,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
],
)
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False)