import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
MODEL_LIST = ["THUDM/glm-4v-9b"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]
TITLE = "
VL-Chatbox
"
DESCRIPTION = f''
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(0)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model.eval()
@spaces.GPU()
def stream_chat(message, history: list, temperature: float, max_length: int):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
if message["files"]:
image = Image.open(message["files"][-1]).convert('RGB')
conversation.append({"role": "user", "image": image, "content": message['text']})
else:
if len(history) == 0:
raise gr.Error("Please upload an image first.")
image = None
else:
image = Image.open(history[0][1])
for prompt, answer in history:
if answer is None:
conversation.extend([{"role": "user", "content": prompt},{"role": "assistant", "content": ""}])
else:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "image": image, "content": message['text']})
print(f"Conversation is -\n{conversation}")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
max_length=max_length,
streamer=streamer,
do_sample=True,
top_k=1,
temperature=temperature,
repetition_penalty=1.2,
)
gen_kwargs = {**input_ids, **generate_kwargs}
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=450)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_types=["image"],
placeholder="Enter message or upload file...",
show_label=False,
)
EXAMPLES = [
[{"text": "Describe it in great detailed.", "files": ["./laptop.jpg"]}],
[{"text": "Describe it in great detailed.", "files": ["./hotel.jpg"]}],
[{"text": "Describe it in great detailed.", "files": ["./spacecat.png"]}]
]
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max Length",
render=False,
),
],
),
gr.Examples(EXAMPLES,[chat_input])
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False)