Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import gradio as gr | |
import torch | |
import numpy as np | |
import random | |
from diffusers import FluxPipeline | |
from translatepy import Translator | |
from huggingface_hub import hf_hub_download | |
import requests | |
import re | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
translator = Translator() | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
# Constants | |
model = "black-forest-labs/FLUX.1-dev" | |
MAX_SEED = np.iinfo(np.int32).max | |
CSS = """ | |
footer { | |
visibility: hidden; | |
} | |
""" | |
JS = """function () { | |
gradioURL = window.location.href | |
if (!gradioURL.endsWith('?__theme=dark')) { | |
window.location.replace(gradioURL + '?__theme=dark'); | |
} | |
}""" | |
if torch.cuda.is_available(): | |
pipe = FluxPipeline.from_pretrained(model, torch_dtype=torch.bfloat16) | |
def scrape_lora_link(url): | |
try: | |
# Send a GET request to the URL | |
response = requests.get(url) | |
response.raise_for_status() # Raise an exception for bad status codes | |
# Get the content of the page | |
content = response.text | |
# Use regular expression to find the link | |
pattern = r'href="(.*?lora.*?\.safetensors\?download=true)"' | |
match = re.search(pattern, content) | |
if match: | |
safetensors_url = match.group(1) | |
filename = safetensors_url.split('/')[-1].split('?')[0] # Extract the filename from the URL | |
return filename | |
else: | |
return None | |
except requests.RequestException as e: | |
raise gr.Error(f"An error occurred while fetching the URL: {e}") | |
return None | |
def enable_lora(lora_scale,lora_add): | |
if not lora_add: | |
gr.Info("No Lora Loaded, Use basemodel") | |
else: | |
url = f'https://huggingface.co/{lora_add}/tree/main' | |
lora_name = scrape_lora_link(url) | |
if lora_name: | |
pipe.load_lora_weights(lora_add, weight_name=lora_name) | |
pipe.fuse_lora(lora_scale=lora_scale) | |
gr.Info(f"{lora_add} Loaded") | |
else: | |
gr.Warning(f"{lora_add} Load fail, check again.") | |
def generate_image( | |
prompt:str, | |
lora_word:str, | |
width:int=768, | |
height:int=1024, | |
scales:float=3.5, | |
steps:int=24, | |
seed:int=-1, | |
nums:int=1, | |
progress=gr.Progress(track_tqdm=True)): | |
pipe.to(device="cuda") | |
if seed == -1: | |
seed = random.randint(0, MAX_SEED) | |
seed = int(seed) | |
print(f'prompt:{prompt}') | |
text = str(translator.translate(prompt, 'English')) + "," + lora_word | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=text, | |
height=height, | |
width=width, | |
guidance_scale=scales, | |
output_type="pil", | |
num_inference_steps=steps, | |
max_sequence_length=512, | |
num_images_per_prompt=nums, | |
generator=generator, | |
).images | |
return image, seed | |
examples = [ | |
["close up portrait, Amidst the interplay of light and shadows in a photography studio,a soft spotlight traces the contours of a face,highlighting a figure clad in a sleek black turtleneck. The garment,hugging the skin with subtle luxury,complements the Caucasian model's understated makeup,embodying minimalist elegance. Behind,a pale gray backdrop extends,its fine texture shimmering subtly in the dim light,artfully balancing the composition and focusing attention on the subject. In a palette of black,gray,and skin tones,simplicity intertwines with profundity,as every detail whispers untold stories.",0.9,"Shakker-Labs/AWPortrait-FL",""], | |
["Caucasian,The image features a young woman of European descent standing in an studio setting,surrounded by silk. (She is wearing a silk dress),paired with a bold. Her brown hair is wet and tousled,falling naturally around her face,giving her a raw and edgy look. The woman has an intense and direct gaze,adding to the dramatic feel of the image. The backdrop is flowing silk,big silk. The overall composition blends elements of fashion and nature,creating a striking and powerful visual",0.9,"Shakker-Labs/AWPortrait-FL",""], | |
["A black and white portrait of a young woman with a captivating gaze. She's bundled up in a cozy black sweater,hands gently cupped near her face. The monochromatic tones highlight her delicate features and the contemplative mood of the image",0.9,"Shakker-Labs/AWPortrait-FL",""], | |
["Fashion photography portrait,close up portrait,(a woman of European descent is surrounded by lava rock and magma from head to neck, red magma hair, wear volcanic lava rock magma outfit coat lava rock magma fashion costume with ruffled layers",0.9,"Shakker-Labs/AWPortrait-FL",""] | |
] | |
# Gradio Interface | |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo: | |
gr.HTML("<h1><center>Flux Labs</center></h1>") | |
gr.HTML("<p><center>Load the LoRA model on the menu</center></p>") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
img = gr.Gallery(label='flux Generated Image', columns = 1, preview=True, height=600) | |
with gr.Row(): | |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6) | |
sendBtn = gr.Button(scale=1, variant='primary') | |
with gr.Accordion("Advanced Options", open=True): | |
with gr.Column(scale=1): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=1280, | |
step=8, | |
value=768, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=1280, | |
step=8, | |
value=1024, | |
) | |
scales = gr.Slider( | |
label="Guidance", | |
minimum=3.5, | |
maximum=7, | |
step=0.1, | |
value=3.5, | |
) | |
steps = gr.Slider( | |
label="Steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=24, | |
) | |
seed = gr.Slider( | |
label="Seeds", | |
minimum=-1, | |
maximum=MAX_SEED, | |
step=1, | |
value=-1, | |
) | |
nums = gr.Slider( | |
label="Image Numbers", | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=1, | |
) | |
with gr.Column(scale=1): | |
lora_scale = gr.Slider( | |
label="LoRA Scale", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
) | |
lora_add = gr.Textbox( | |
label="Add Flux LoRA", | |
info="Copy the HF LoRA model name here", | |
lines=1, | |
value="Shakker-Labs/AWPortrait-FL", | |
) | |
lora_word = gr.Textbox( | |
label="Add Flux LoRA Trigger Word", | |
info="Add the Trigger Word", | |
lines=1, | |
value="", | |
) | |
load_lora = gr.Button(value="Load LoRA", variant='secondary') | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt,lora_scale,lora_add,lora_word], | |
cache_examples=False, | |
examples_per_page=4, | |
) | |
load_lora.click(fn=enable_lora, inputs=[lora_scale,lora_add]) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
sendBtn.click, | |
], | |
fn=generate_image, | |
inputs=[ | |
prompt, | |
lora_word, | |
width, | |
height, | |
scales, | |
steps, | |
seed, | |
nums | |
], | |
outputs=[img, seed], | |
api_name="run", | |
) | |
demo.queue().launch() |