Spaces:
vilarin
/
Running on Zero

vilarin commited on
Commit
a434ddd
1 Parent(s): 6c9c48a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -35
app.py CHANGED
@@ -1,6 +1,8 @@
 
 
1
  import gradio as gr
2
  import torch
3
- from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
4
  from huggingface_hub import hf_hub_download
5
  import spaces
6
  from PIL import Image
@@ -10,13 +12,8 @@ from translatepy import Translator
10
  translator = Translator()
11
 
12
  # Constants
13
- base = "stabilityai/stable-diffusion-xl-base-1.0"
14
- repo = "tianweiy/DMD2"
15
- checkpoints = {
16
- "1-Step" : ["dmd2_sdxl_1step_unet_fp16.bin", 1],
17
- "4-Step" : ["dmd2_sdxl_4step_unet_fp16.bin", 4],
18
- }
19
- loaded = None
20
 
21
  CSS = """
22
  .gradio-container {
@@ -35,37 +32,44 @@ JS = """function () {
35
  }"""
36
 
37
 
 
 
 
 
 
38
 
39
  # Ensure model and scheduler are initialized in GPU-enabled function
40
  if torch.cuda.is_available():
41
- unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
42
- pipe = DiffusionPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
 
43
 
44
 
45
  # Function
46
  @spaces.GPU()
47
- def generate_image(prompt, ckpt="4-Step"):
48
- global loaded
 
 
 
 
 
 
49
 
50
  prompt = str(translator.translate(prompt, 'English'))
51
 
52
- print(prompt)
53
 
54
- checkpoint = checkpoints[ckpt][0]
55
- num_inference_steps = checkpoints[ckpt][1]
56
-
57
- if loaded != num_inference_steps:
58
- pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
59
- pipe.unet.load_state_dict(torch.load(hf_hub_download(repo, checkpoint), map_location="cuda"))
60
- loaded = num_inference_steps
61
-
62
- if loaded == 1:
63
- timesteps=[399]
64
- else:
65
- timesteps=[999, 749, 499, 249]
66
-
67
- results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0, timesteps=timesteps)
68
- return results.images[0]
69
 
70
 
71
  examples = [
@@ -82,14 +86,53 @@ examples = [
82
  # Gradio Interface
83
 
84
  with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
85
- gr.HTML("<h1><center>DMD2🦖</center></h1>")
86
- gr.HTML("<p><center><a href='https://huggingface.co/tianweiy/DMD2'>DMD2</a> text-to-image generation</center><br><center>Multi-Languages, 4-step is higher quality & 2X slower</center></p>")
87
  with gr.Group():
88
  with gr.Row():
89
- prompt = gr.Textbox(label='Enter Your Prompt', scale=8)
90
- ckpt = gr.Dropdown(label='Steps',choices=['1-Step', '4-Step'], value='4-Step', interactive=True)
91
  submit = gr.Button(scale=1, variant='primary')
92
- img = gr.Image(label='DMD2 Generated Image')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  gr.Examples(
94
  examples=examples,
95
  inputs=prompt,
@@ -99,11 +142,11 @@ with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
99
  )
100
 
101
  prompt.submit(fn=generate_image,
102
- inputs=[prompt, ckpt],
103
  outputs=img,
104
  )
105
  submit.click(fn=generate_image,
106
- inputs=[prompt, ckpt],
107
  outputs=img,
108
  )
109
 
 
1
+
2
+
3
  import gradio as gr
4
  import torch
5
+ from diffusers import StableDiffusionXLPipeline, AutoencoderKL, KDPM2AncestralDiscreteScheduler
6
  from huggingface_hub import hf_hub_download
7
  import spaces
8
  from PIL import Image
 
12
  translator = Translator()
13
 
14
  # Constants
15
+ model = "stabilityai/stable-diffusion-3-medium"
16
+ vae_model = "madebyollin/sdxl-vae-fp16-fix"
 
 
 
 
 
17
 
18
  CSS = """
19
  .gradio-container {
 
32
  }"""
33
 
34
 
35
+ # Load VAE component
36
+ vae = AutoencoderKL.from_pretrained(
37
+ vae_model,
38
+ torch_dtype=torch.float16
39
+ )
40
 
41
  # Ensure model and scheduler are initialized in GPU-enabled function
42
  if torch.cuda.is_available():
43
+ pipe = StableDiffusionXLPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16).to("cuda")
44
+
45
+ pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
46
 
47
 
48
  # Function
49
  @spaces.GPU()
50
+ def generate_image(
51
+ prompt,
52
+ negative="low quality",
53
+ width=1024,
54
+ height=1024,
55
+ scale=1.5,
56
+ steps=30,
57
+ clip=3):
58
 
59
  prompt = str(translator.translate(prompt, 'English'))
60
 
61
+ print(f'prompt:{prompt}')
62
 
63
+ image = pipe(
64
+ prompt,
65
+ negative_prompt=negative,
66
+ width=width,
67
+ height=height,
68
+ guidance_scale=scale,
69
+ num_inference_steps=steps,
70
+ clip_skip=clip,
71
+ )
72
+ return image.images[0]
 
 
 
 
 
73
 
74
 
75
  examples = [
 
86
  # Gradio Interface
87
 
88
  with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
89
+ gr.HTML("<h1><center>Mobius💠</center></h1>")
90
+ gr.HTML("<p><center><a href='https://huggingface.co/Corcelio/mobius'>mobius</a> text-to-image generation</center><br><center>Multi-Languages. Adding default prompts to enhance.</center></p>")
91
  with gr.Group():
92
  with gr.Row():
93
+ prompt = gr.Textbox(label='Enter Your Prompt', value="best quality, HD, aesthetic", scale=6)
 
94
  submit = gr.Button(scale=1, variant='primary')
95
+ img = gr.Image(label='Mobius Generated Image')
96
+ with gr.Accordion("Advanced Options", open=False):
97
+ with gr.Row():
98
+ negative = gr.Textbox(label="Negative prompt", value="low quality")
99
+ with gr.Row():
100
+ width = gr.Slider(
101
+ label="Width",
102
+ minimum=512,
103
+ maximum=1280,
104
+ step=8,
105
+ value=1024,
106
+ )
107
+ height = gr.Slider(
108
+ label="Height",
109
+ minimum=512,
110
+ maximum=1280,
111
+ step=8,
112
+ value=1024,
113
+ )
114
+ with gr.Row():
115
+ scale = gr.Slider(
116
+ label="Guidance",
117
+ minimum=3.5,
118
+ maximum=7,
119
+ step=0.1,
120
+ value=7,
121
+ )
122
+ steps = gr.Slider(
123
+ label="Steps",
124
+ minimum=1,
125
+ maximum=50,
126
+ step=1,
127
+ value=50,
128
+ )
129
+ clip = gr.Slider(
130
+ label="Clip Skip",
131
+ minimum=1,
132
+ maximum=10,
133
+ step=1,
134
+ value=3,
135
+ )
136
  gr.Examples(
137
  examples=examples,
138
  inputs=prompt,
 
142
  )
143
 
144
  prompt.submit(fn=generate_image,
145
+ inputs=[prompt, negative, width, height, scale, steps, clip],
146
  outputs=img,
147
  )
148
  submit.click(fn=generate_image,
149
+ inputs=[prompt, negative, width, height, scale, steps, clip],
150
  outputs=img,
151
  )
152