|
import os |
|
import spaces |
|
import gradio as gr |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
MODELS = ["Qwen/Qwen2-1.5B-Instruct", "Qwen/Qwen2-1.5B-Instruct-GPTQ-Int8"] |
|
model = os.environ.get("MODEL_ID") |
|
model_name = model.split("/")[-1] |
|
|
|
DESCRIPTION = f""" |
|
<h3>MODEL: <a href="https://hf.co/{model}">{model_name}</a></h3> |
|
<center> |
|
<p>Qwen is the large language model built by Alibaba Cloud. |
|
<br> |
|
Feel free to test without log. |
|
</p> |
|
</center> |
|
""" |
|
|
|
css=""" |
|
h3 { |
|
text-align: center; |
|
} |
|
footer { |
|
visibility: hidden; |
|
} |
|
""" |
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
|
|
|
|
|
|
@spaces.GPU |
|
def generate(message, history, system, max_tokens, temperature, top_p, top_k, penalty): |
|
|
|
conversation = [ |
|
{"role": "system", "content":system} |
|
] |
|
for prompt, answer in history: |
|
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
|
|
text = tokenizer.apply_chat_template( |
|
conversation, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
sampling_params = SamplingParams( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
repetition_penalty=penalty, |
|
max_tokens=max_tokens, |
|
stop_token_ids=[151645,151643], |
|
) |
|
|
|
llm = LLM(model=model) |
|
outputs = llm.generate([text], sampling_params) |
|
|
|
|
|
for output in outputs: |
|
prompt = output.prompt |
|
generated_text = output.outputs[0].text |
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
|
return generated_text |
|
|
|
|
|
|
|
chatbot = gr.Chatbot(height=800) |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.HTML(DESCRIPTION) |
|
gr.ChatInterface( |
|
fn=generate, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a helpful assistant.", label="System message", render=False), |
|
gr.Slider( |
|
minimum=1, |
|
maximum=30720, |
|
value=2048, |
|
step=1, |
|
label="Max tokens", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0, |
|
maximum=20, |
|
value=20, |
|
step=1, |
|
label="Top-k", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=2.0, |
|
value=1, |
|
step=0.1, |
|
label="Repetition penalty", |
|
render=False, |
|
), |
|
], |
|
retry_btn="Retry", |
|
undo_btn="Undo", |
|
clear_btn="Clear", |
|
submit_btn="Send", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |