File size: 5,754 Bytes
61448a4
 
 
 
 
 
1bf0164
61448a4
 
 
 
 
 
dc3cb2a
 
 
61448a4
dc3cb2a
61448a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bf0164
 
 
 
 
 
 
 
61448a4
 
 
1bf0164
 
 
 
 
61448a4
 
1bf0164
 
 
 
 
 
 
 
61448a4
1bf0164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc3cb2a
1bf0164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc3cb2a
 
1bf0164
 
 
 
dc3cb2a
1bf0164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc3cb2a
 
 
 
 
 
 
 
 
 
 
1bf0164
 
dc3cb2a
 
 
 
 
 
 
 
 
 
 
61448a4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import streamlit as st
import pandas as pd
from plip_support import embed_text
import numpy as np
from PIL import Image
import requests
import pickle
import tokenizers
from io import BytesIO
import torch
from transformers import (
    VisionTextDualEncoderModel,
    AutoFeatureExtractor,
    AutoTokenizer,
    CLIPModel,
    AutoProcessor
)
import streamlit.components.v1 as components


def embed_texts(model, texts, processor):
    inputs = processor(text=texts, padding="longest")
    input_ids = torch.tensor(inputs["input_ids"])
    attention_mask = torch.tensor(inputs["attention_mask"])

    with torch.no_grad():
        embeddings = model.get_text_features(
            input_ids=input_ids, attention_mask=attention_mask
        )
    return embeddings

@st.cache
def load_embeddings(embeddings_path):
    print("loading embeddings")
    return np.load(embeddings_path)

@st.cache(
    hash_funcs={
        torch.nn.parameter.Parameter: lambda _: None,
        tokenizers.Tokenizer: lambda _: None,
        tokenizers.AddedToken: lambda _: None
    }
)
def load_path_clip():
    model = CLIPModel.from_pretrained("vinid/plip")
    processor = AutoProcessor.from_pretrained("vinid/plip")
    return model, processor

def init():
    with open('data/twitter.asset', 'rb') as f:
        data = pickle.load(f)
    meta = data['meta'].reset_index(drop=True)
    image_embedding = data['embedding']
    print(meta.shape, image_embedding.shape)
    validation_subset_index = meta['source'].values == 'Val_Tweets'
    return meta, image_embedding, validation_subset_index

def app():

    st.title('Text to Image Retrieval')
    st.markdown('#### A pathology image search engine that correlate texts directly with images.')
    st.caption('Note: The searching query matches images only. The twitter text does not used for searching.')
    
    meta, image_embedding, validation_subset_index = init()
    model, processor = load_path_clip()

    data_options = ["All twitter data (2006-03-21 β€” 2023-01-15)",
                    "Twitter validation data (2022-11-16 β€” 2023-01-15)"]
    st.radio(
        "Choose dataset for image retrieval πŸ‘‰",
        key="datapool",
        options=data_options,
    )
        

    col1, col2 = st.columns(2)
    #query = st.text_input('Search Query', '')
    col1_submit = False
    show = False
    with col1:
        # Create selectbox
        examples = ['Breast tumor surrounded by fat',
                    'HER2+ breast tumor',
                    'Colorectal cancer tumor on epithelium',
                    'An image of endometrium epithelium',
                    'Breast cancer DCIS',
                    'Papillary carcinoma in breast tissue',
                    ]
        query_1 = st.selectbox("Please select an example query", options=examples)
        #st.info(f":white_check_mark: The written option is {query_1} ")
        col1_submit = True
        show = True
        
    with col2:
        form = st.form(key='my_form')
        query_2 = form.text_input(label='Or input your custom query:')
        submit_button = form.form_submit_button(label='Submit')
    
    if submit_button:
        col1_submit = False
        show = True


    if col1_submit:
        query = query_1
    else:
        query = query_2

    text_embedding = embed_texts(model, [query], processor)[0].detach().cpu().numpy()
    text_embedding = text_embedding/np.linalg.norm(text_embedding)
    
    similarity_scores = text_embedding.dot(image_embedding.T)

    topn = 5
    if st.session_state.datapool == data_options[0]:
        #Use all twitter data
        id_sorted = np.argsort(similarity_scores)[::-1]
        best_ids = id_sorted[:topn]
        best_scores = similarity_scores[best_ids]
        target_weblinks = meta["weblink"].values[best_ids]
    else:
        #Use validation twitter data
        similarity_scores = similarity_scores[validation_subset_index]
        # Sort IDs by cosine-similarity from high to low
        id_sorted = np.argsort(similarity_scores)[::-1]
        best_ids = id_sorted[:topn]
        best_scores = similarity_scores[best_ids]
        target_weblinks = meta["weblink"].values[validation_subset_index][best_ids]
    #TODO: Avoid duplicated ID

    topk_options = ['1st', '2nd', '3rd', '4th', '5th']
    st.radio(
        "Choose the most similar  πŸ‘‰",
        key="top_k",
        options=topk_options,
        horizontal=True
    )
    topn_txt = st.session_state.top_k
    topn_value = int(st.session_state.top_k[0])-1
    st.caption(f'The {topn_txt} relevant image (similarity = {best_scores[topn_value]:.4f})')
    components.html('''
        <blockquote class="twitter-tweet">
            <a href="%s"></a>
        </blockquote>
        <script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
        </script>
        ''' % target_weblinks[topn_value],
    height=800)











    st.markdown('Disclaimer')
    st.caption('Please be advised that this function has been developed in compliance with the Twitter policy of data usage and sharing. It is important to note that the results obtained from this function are not intended to constitute medical advice or replace consultation with a qualified medical professional. The use of this function is solely at your own risk and should be consistent with applicable laws, regulations, and ethical considerations. We do not warrant or guarantee the accuracy, completeness, suitability, or usefulness of this function for any particular purpose, and we hereby disclaim any liability arising from any reliance placed on this function or any results obtained from its use. If you wish to review the original Twitter post, you should access the source page directly on Twitter.')