File size: 7,924 Bytes
7987133
 
 
 
 
 
9e74540
7987133
9e74540
 
 
7987133
 
 
 
 
 
 
 
 
9e74540
7987133
 
c276de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7987133
c276de4
 
 
 
 
 
 
 
 
 
 
 
 
 
9e74540
 
 
7987133
34d1458
7987133
 
34d1458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e74540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7987133
 
34d1458
9e74540
 
 
 
 
7987133
 
9e74540
 
 
 
 
 
 
 
34d1458
7987133
34d1458
7987133
 
 
34d1458
 
 
 
 
 
 
 
7987133
34d1458
 
 
 
9e74540
34d1458
 
 
 
 
 
 
 
 
 
9e74540
34d1458
 
 
 
 
9e74540
34d1458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e74540
7987133
 
 
 
 
9e74540
 
7987133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import streamlit as st
import pandas as pd
import numpy as np
from PIL import Image
import requests
import tokenizers
import os
from io import BytesIO
import pickle
import base64

import torch
from transformers import (
    VisionTextDualEncoderModel,
    AutoFeatureExtractor,
    AutoTokenizer,
    CLIPModel,
    AutoProcessor
)
import streamlit.components.v1 as components
from st_clickable_images import clickable_images #pip install st-clickable-images


@st.cache(
    hash_funcs={
        torch.nn.parameter.Parameter: lambda _: None,
        tokenizers.Tokenizer: lambda _: None,
        tokenizers.AddedToken: lambda _: None
    }
)
def load_path_clip():
    model = CLIPModel.from_pretrained("vinid/plip")
    processor = AutoProcessor.from_pretrained("vinid/plip")
    return model, processor

@st.cache
def init():
    with open('data/twitter.asset', 'rb') as f:
        data = pickle.load(f)
    meta = data['meta'].reset_index(drop=True)
    image_embedding = data['image_embedding']
    text_embedding = data['text_embedding']
    print(meta.shape, image_embedding.shape)
    validation_subset_index = meta['source'].values == 'Val_Tweets'
    return meta, image_embedding, text_embedding, validation_subset_index

def embed_images(model, images, processor):
    inputs = processor(images=images)
    pixel_values = torch.tensor(np.array(inputs["pixel_values"]))

    with torch.no_grad():
        embeddings = model.get_image_features(pixel_values=pixel_values)
    return embeddings

def embed_texts(model, texts, processor):
    inputs = processor(text=texts, padding="longest")
    input_ids = torch.tensor(inputs["input_ids"])
    attention_mask = torch.tensor(inputs["attention_mask"])

    with torch.no_grad():
        embeddings = model.get_text_features(
            input_ids=input_ids, attention_mask=attention_mask
        )
    return embeddings
def app():
    st.title('Image to Image Retrieval')
    st.markdown('#### A pathology image search engine that correlate images with images.')

    meta, image_embedding, text_embedding, validation_subset_index = init()
    model, processor = load_path_clip()


    col1, col2 = st.columns(2)
    with col1:
        data_options = ["All twitter data (2006-03-21 β€” 2023-01-15)",
                        "Twitter validation data (2022-11-16 β€” 2023-01-15)"]
        st.radio(
            "Choose dataset for image retrieval πŸ‘‰",
            key="datapool",
            options=data_options,
        )
    with col2:
        retrieval_options = ["Image only",
                            "Text and image (beta)",
                             ]
        st.radio(
            "Similarity calcuation πŸ‘‰",
            key="calculation_option",
            options=retrieval_options,
        )


    st.markdown('Try out following examples:')
    example_path = 'data/example_images'
    list_of_examples = [os.path.join(example_path, v) for v in os.listdir(example_path)]
    example_imgs = []
    for file in list_of_examples:
        with open(file, "rb") as image:
            encoded = base64.b64encode(image.read()).decode()
            example_imgs.append(f"data:image/jpeg;base64,{encoded}")
    clicked = clickable_images(
        example_imgs,
        titles=[f"Image #{str(i)}" for i in range(len(example_imgs))],
        div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"},
        img_style={"margin": "5px", "height": "70px"},
    )
    isExampleClicked = False
    if clicked > -1:
        image = Image.open(list_of_examples[clicked])
        isExampleClicked = True
        





    col1, col2, _ = st.columns(3)
    with col1:
        query = st.file_uploader("Choose a file to upload")


    proceed = False
    if query:
        image = Image.open(query)
        proceed = True
    elif isExampleClicked:
        proceed = True

    if proceed:
        with col2:
            st.image(image, caption='Your upload')

        input_image = embed_images(model, [image], processor)[0].detach().cpu().numpy()

        input_image = input_image/np.linalg.norm(input_image)
        
        # Sort IDs by cosine-similarity from high to low

        if st.session_state.calculation_option == retrieval_options[0]: # Image only
            similarity_scores = input_image.dot(image_embedding.T)
        else: # Text and Image
            similarity_scores_i = input_image.dot(image_embedding.T)
            similarity_scores_t = input_image.dot(text_embedding.T)
            similarity_scores_i = similarity_scores_i/np.max(similarity_scores_i)
            similarity_scores_t = similarity_scores_t/np.max(similarity_scores_t)
            similarity_scores = (similarity_scores_i + similarity_scores_t)/2


        ############################################################
        # Get top results
        ############################################################
        topn = 5
        df = pd.DataFrame(np.c_[np.arange(len(meta)), similarity_scores, meta['weblink'].values], columns = ['idx', 'score', 'twitterlink'])
        if st.session_state.datapool == data_options[1]: #Use val twitter data
            df = df.loc[validation_subset_index,:]
        df = df.sort_values('score', ascending=False)
        df = df.drop_duplicates(subset=['twitterlink'])
        best_id_topk = df['idx'].values[:topn]
        target_scores = df['score'].values[:topn]
        target_weblinks = df['twitterlink'].values[:topn]



        ############################################################
        # Display results
        ############################################################
        
        st.markdown('#### Top 5 results:')
        topk_options = ['1st', '2nd', '3rd', '4th', '5th']
        tab = {}
        tab[0], tab[1], tab[2] = st.columns(3)
        for i in [0,1,2]:
            with tab[i]:
                topn_value = i
                topn_txt = topk_options[i]
                st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
                components.html('''
                    <blockquote class="twitter-tweet">
                        <a href="%s"></a>
                    </blockquote>
                    <script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
                    </script>
                    ''' % target_weblinks[topn_value],
                height=800)

        tab[3], tab[4], tab[5] = st.columns(3)
        for i in [3,4]:
            with tab[i]:
                topn_value = i
                topn_txt = topk_options[i]
                st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
                components.html('''
                    <blockquote class="twitter-tweet">
                        <a href="%s"></a>
                    </blockquote>
                    <script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
                    </script>
                    ''' % target_weblinks[topn_value],
                height=800)










    st.markdown('Disclaimer')
    st.caption('Please be advised that this function has been developed in compliance with the Twitter policy of data usage and sharing. It is important to note that the results obtained from this function are not intended to constitute medical advice or replace consultation with a qualified medical professional. The use of this function is solely at your own risk and should be consistent with applicable laws, regulations, and ethical considerations. We do not warrant or guarantee the accuracy, completeness, suitability, or usefulness of this function for any particular purpose, and we hereby disclaim any liability arising from any reliance placed on this function or any results obtained from its use. If you wish to review the original Twitter post, you should access the source page directly on Twitter.')