import streamlit as st import pandas as pd import numpy as np from PIL import Image import requests import pickle import tokenizers from io import BytesIO import torch from transformers import ( VisionTextDualEncoderModel, AutoFeatureExtractor, AutoTokenizer, CLIPModel, AutoProcessor ) import streamlit.components.v1 as components @st.cache( hash_funcs={ torch.nn.parameter.Parameter: lambda _: None, tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None } ) def load_path_clip(): model = CLIPModel.from_pretrained("vinid/plip") processor = AutoProcessor.from_pretrained("vinid/plip") return model, processor @st.cache def init(): with open('data/twitter.asset', 'rb') as f: data = pickle.load(f) meta = data['meta'].reset_index(drop=True) image_embedding = data['image_embedding'] text_embedding = data['text_embedding'] print(meta.shape, image_embedding.shape) validation_subset_index = meta['source'].values == 'Val_Tweets' return meta, image_embedding, text_embedding, validation_subset_index def embed_images(model, images, processor): inputs = processor(images=images) pixel_values = torch.tensor(np.array(inputs["pixel_values"])) with torch.no_grad(): embeddings = model.get_image_features(pixel_values=pixel_values) return embeddings def embed_texts(model, texts, processor): inputs = processor(text=texts, padding="longest") input_ids = torch.tensor(inputs["input_ids"]) attention_mask = torch.tensor(inputs["attention_mask"]) with torch.no_grad(): embeddings = model.get_text_features( input_ids=input_ids, attention_mask=attention_mask ) return embeddings def app(): st.title('Text to Image Retrieval') st.markdown('#### A pathology image search engine that correlate texts directly with images.') col1, col2 = st.columns([1,1]) with col1: st.markdown("The text-to-image retrieval system can serve as an image search engine, enabling users to match images from multiple queries and retrieve the most relevant image based on a sentence description. This generic system can comprehend semantic and interrelated knowledge, such as โBreast tumor surrounded by fatโ.") st.markdown("Unlike searching keywords and sentences from Google and indirectly matching the images from the target text, our proposed pathology image retrieval allows direct comparison between input sentences and images.") with col2: fig1 = Image.open('resources/4x/image_retrieval.png') st.image(fig1, caption='Image retrieval from text', width=400, output_format='png') meta, image_embedding, text_embedding, validation_subset_index = init() model, processor = load_path_clip() st.markdown('#### Demo') col1, col2 = st.columns(2) with col1: data_options = ["All twitter data (03/21/2006 โ 01/15/2023)", "Twitter validation data (11/16/2022 โ 01/15/2023)"] st.radio( "Choose dataset for image retrieval ๐", key="datapool", options=data_options, ) with col2: retrieval_options = ["Image only", "Text and image (beta)", ] st.radio( "Similarity calcuation Mapping input with ๐", key="calculation_option", options=retrieval_options, ) col1, col2 = st.columns(2) #query = st.text_input('Search Query', '') col1_submit = False show = False with col1: # Create selectbox examples = ['Breast tumor surrounded by fat', 'HER2+ breast tumor', 'Colorectal cancer tumor on epithelium', 'An image of endometrium epithelium', 'Breast cancer DCIS', 'Papillary carcinoma in breast tissue', ] query_1 = st.selectbox("Please select an example query", options=examples) #st.info(f":white_check_mark: The written option is {query_1} ") col1_submit = True show = True with col2: form = st.form(key='my_form') query_2 = form.text_input(label='Or input your custom query:') submit_button = form.form_submit_button(label='Submit') if submit_button: col1_submit = False show = True if col1_submit: query = query_1 else: query = query_2 input_text = embed_texts(model, [query], processor)[0].detach().cpu().numpy() input_text = input_text/np.linalg.norm(input_text) if st.session_state.calculation_option == retrieval_options[0]: # Image only similarity_scores = input_text.dot(image_embedding.T) else: # Text and Image similarity_scores_i = input_text.dot(image_embedding.T) similarity_scores_t = input_text.dot(text_embedding.T) similarity_scores_i = similarity_scores_i/np.max(similarity_scores_i) similarity_scores_t = similarity_scores_t/np.max(similarity_scores_t) similarity_scores = (similarity_scores_i + similarity_scores_t)/2 ############################################################ # Get top results ############################################################ topn = 5 df = pd.DataFrame(np.c_[np.arange(len(meta)), similarity_scores, meta['weblink'].values], columns = ['idx', 'score', 'twitterlink']) if st.session_state.datapool == data_options[1]: #Use val twitter data df = df.loc[validation_subset_index,:] df = df.sort_values('score', ascending=False) df = df.drop_duplicates(subset=['twitterlink']) best_id_topk = df['idx'].values[:topn] target_scores = df['score'].values[:topn] target_weblinks = df['twitterlink'].values[:topn] ############################################################ # Display results ############################################################ st.markdown('Your input query: %s' % query) st.markdown('#### Top 5 results:') topk_options = ['1st', '2nd', '3rd', '4th', '5th'] tab = {} tab[0], tab[1], tab[2] = st.columns(3) for i in [0,1,2]: with tab[i]: topn_value = i topn_txt = topk_options[i] st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})') components.html('''
''' % target_weblinks[topn_value], height=800) tab[3], tab[4], tab[5] = st.columns(3) for i in [3,4]: with tab[i]: topn_value = i topn_txt = topk_options[i] st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})') components.html('''
''' % target_weblinks[topn_value], height=800) st.markdown('Disclaimer') st.caption('Please be advised that this function has been developed in compliance with the Twitter policy of data usage and sharing. It is important to note that the results obtained from this function are not intended to constitute medical advice or replace consultation with a qualified medical professional. The use of this function is solely at your own risk and should be consistent with applicable laws, regulations, and ethical considerations. We do not warrant or guarantee the accuracy, completeness, suitability, or usefulness of this function for any particular purpose, and we hereby disclaim any liability arising from any reliance placed on this function or any results obtained from its use. If you wish to review the original Twitter post, you should access the source page directly on Twitter.')