SynapseEd / app.py
vinmay1234's picture
Update app.py
d5496a8 verified
from datasets import load_dataset
# Load 70% of the Wikipedia dataset
# dataset = load_dataset('wikimedia/wikipedia', "20231101.en", split='train[:70%]')
dataset = load_dataset('lucadiliello/wikipedia_512_pretraining',split = 'train[:70%]')
# from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
# # Define the quantization configuration for 4-bit
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True, # Enable 4-bit precision
# bnb_4bit_quant_type="nf4", # Use the NF4 quantization type (good for reducing memory)
# bnb_4bit_use_double_quant=True, # Enables double quantization to improve accuracy
# bnb_4bit_compute_dtype="float16" # Use float16 for faster computation
# )
# # Load the tokenizer
# tokenizer = AutoTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0')
# # Load the model with the quantization configuration
# model = AutoModelForCausalLM.from_pretrained(
# 'TinyLlama/TinyLlama-1.1B-Chat-v1.0',
# quantization_config=quantization_config, # Apply the 4-bit quantization config
# device_map='auto' # Automatically map model to available devices (e.g., GPU/CPU)
# )
# # Enable gradient checkpointing to reduce memory usage during training
# model.gradient_checkpointing_enable()
########################################################### gpt2 ####################################################
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
# Define the quantization configuration for 4-bit
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, # Enable 4-bit precision
bnb_4bit_quant_type="nf4", # Use the NF4 quantization type (good for reducing memory)
bnb_4bit_use_double_quant=True, # Enables double quantization to improve accuracy
bnb_4bit_compute_dtype="float16" # Use float16 for faster computation
)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained('gpt2')
# Load the model with the quantization configuration
model = AutoModelForCausalLM.from_pretrained(
'gpt2',
quantization_config=quantization_config, # Apply the 4-bit quantization config
device_map='auto' # Automatically map model to available devices (e.g., GPU/CPU)
)
# Enable gradient checkpointing to reduce memory usage during training
model.gradient_checkpointing_enable()
from peft import LoraConfig, get_peft_model
import bitsandbytes as bnb
# Configure PEFT with 4-bit precision
# lora_config = LoraConfig(r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none")
lora_config = LoraConfig(r=16, lora_alpha=32, target_modules=["attn.c_attn", "mlp.c_fc", "mlp.c_proj"], lora_dropout=0.05, bias="none")
peft_model = get_peft_model(model, lora_config)
# Set the pad token (using eos_token or adding a new special token)
if tokenizer.pad_token is None:
# Option 1: Use eos_token as pad_token
tokenizer.pad_token = tokenizer.eos_token
# Option 2: Add [PAD] as a new pad token if needed
# tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# Tokenize the dataset with optimized settings
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=150)
tokenized_dataset = dataset.select(range(100000)).map(tokenize_function, batched=True)
def prepare_labels(batch):
batch["labels"] = batch["input_ids"].copy() # Copy input_ids as labels for language modeling
return batch
# Apply the transformation to add labels
tokenized_dataset = tokenized_dataset.map(prepare_labels, batched=True)
# Step 1: Install FAISS for the Vector Database
from datasets import Dataset
from transformers import AutoModel, AutoTokenizer
import faiss
import numpy as np
from tqdm import tqdm # Import tqdm for progress bar
# Load your tokenizer and model
embedding_model_name = "sentence-transformers/all-mpnet-base-v2"
embedding_model = AutoModel.from_pretrained(embedding_model_name)
embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name)
# Move the model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
embedding_model.to(device)
# Function to generate embeddings in batches
def embed_text_batch(texts, batch_size=16):
all_embeddings = []
for i in tqdm(range(0, len(texts), batch_size), desc="Generating embeddings"):
batch_texts = texts[i:i + batch_size]
# Tokenize and move inputs to the GPU
inputs = embedding_tokenizer(batch_texts, padding=True, truncation=True, return_tensors="pt").to(device)
with torch.no_grad():
# Generate embeddings and move them back to CPU
embeddings = embedding_model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy() # Mean pooling
all_embeddings.extend(embeddings)
return np.array(all_embeddings)
# Step 1: Process the dataset in batches
texts = tokenized_dataset["text"]
batch_size = 16 # Adjust based on Colab memory
embeddings = embed_text_batch(texts, batch_size=batch_size)
# Step 2: Add embeddings as a new column to the dataset
tokenized_dataset = tokenized_dataset.add_column("embeddings", embeddings.tolist())
# Step 3: Add FAISS index
dimension = embeddings.shape[1] # Dimension of embeddings
faiss_index = faiss.IndexFlatL2(dimension)
# Step 4: Add embeddings to FAISS index
faiss_index.add(embeddings)
# Step 5: Save the dataset and FAISS index
tokenized_dataset.save_to_disk("wikipedia_dataset_with_embeddings")
faiss.write_index(faiss_index, "wikipedia_faiss.index")
print("FAISS index and dataset saved successfully.")
def embed_query(query):
# Tokenize and embed the query
inputs = embedding_tokenizer([query], padding=True, truncation=True, return_tensors="pt").to(device)
with torch.no_grad():
query_embedding = embedding_model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
return query_embedding
def search_faiss(query_embedding, faiss_index, top_k=5):
# Search the FAISS index
distances, indices = faiss_index.search(query_embedding, top_k)
return distances, indices
def get_top_answer(indices, dataset):
# Retrieve the top answer(s) from the dataset based on the indices
return dataset["text"][indices[0][0]] # Assuming top result, can adjust for more answers
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import faiss
import numpy as np
# Assuming embeddings and faiss_index are already created as in your previous code
# Load the pre-trained LLM for generation (you can replace it with a different one)
llm_model_name = "facebook/bart-large-cnn" # Example: You can use GPT-3, BART, T5, etc.
llm_model = AutoModelForSeq2SeqLM.from_pretrained(llm_model_name)
llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
llm_model.to(device)
# Embedding model used for creating the vector database (same as the one used to generate embeddings for dataset)
embedding_model_name = "sentence-transformers/all-mpnet-base-v2"
embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name)
embedding_model = AutoModel.from_pretrained(embedding_model_name)
embedding_model.to(device)
# Function to embed a query (same as before)
def embed_query(query):
inputs = embedding_tokenizer([query], padding=True, truncation=True, return_tensors="pt").to(device)
with torch.no_grad():
query_embedding = embedding_model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
return query_embedding
# Function to search FAISS index and retrieve top k results
def search_faiss(query_embedding, faiss_index, top_k=5):
distances, indices = faiss_index.search(query_embedding, top_k)
return distances, indices
# Function to generate an answer using the LLM based on the retrieved documents
def generate_answer(query, retrieved_texts):
# Combine the query and the retrieved texts into a single input
context = " ".join(retrieved_texts)
input_text = f"Question: {query}\nContext: {context}\nAnswer:"
# Tokenize and pass to the LLM
inputs = llm_tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True).to(device)
with torch.no_grad():
generated_ids = llm_model.generate(inputs['input_ids'], max_length=150)
# Decode the generated response
answer = llm_tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return answer
# Function to retrieve the texts from the dataset based on FAISS index results
def get_retrieved_texts(indices, dataset, top_k=5):
retrieved_texts = []
for idx in indices[0][:top_k]: # Get the top K results
retrieved_texts.append(dataset['text'][idx]) # Assuming 'text' is the relevant field in the dataset
return retrieved_texts
# Example usage
def rag_pipeline(question, faiss_index, dataset, top_k=3):
# Step 1: Embed the query
query_embedding = embed_query(question)
# Step 2: Search the FAISS index for the top K similar documents
distances, indices = search_faiss(query_embedding, faiss_index, top_k=top_k)
# Step 3: Retrieve the top K relevant documents from the dataset
retrieved_texts = get_retrieved_texts(indices, dataset, top_k=top_k)
# Step 4: Generate the answer using the retrieved texts and the LLM
answer = generate_answer(question, retrieved_texts)
return answer
# Import the necessary modules
from langchain_community.llms import Ollama
# Load the Ollama model
gen_model = Ollama(model="llama2")
# Define a function to get predefined responses for specific queries
def get_predefined_response(question):
predefined_responses = {
"hi": "Hello! How can I assist you today?",
"hello": "Hi there! 😊 What can I help you with?",
"who made you?": "I was created by Vinmay and his team.",
"what is your purpose?": "I'm here to assist you with educational queries and provide information.",
# Add more predefined responses as needed
}
# Normalize the question to make it case insensitive
normalized_question = question.lower()
return predefined_responses.get(normalized_question, None)
# Modify the generate_response function to check for predefined responses
def generate_response(markdown, question, user_instructions=None, max_new_tokens=250, temperature=0.9, top_p=0.95):
# Check for predefined response first
predefined_response = get_predefined_response(question)
if predefined_response:
return predefined_response
instruction_text = f" Please follow these instructions: {user_instructions}" if user_instructions else ""
prompt = (
f"Using the provided context, please generate a unique and insightful answer that directly addresses the question:\n\n"
f"Context:\n{markdown}\n\n"
f"Question: {question}\n"
f"{instruction_text}\n"
f"If any personal query asked then refer{predefined_response}\n and based upon it, genarate your own answer"
f"Please synthesize your response by integrating the information with your own understanding: "
)
# Call the Ollama model using the `invoke` method
response = gen_model.invoke(prompt, max_tokens=max_new_tokens, temperature=temperature, top_p=top_p)
# Check if the response is a string (direct generated text) or a dictionary (with metadata)
if isinstance(response, str):
return response # Return the raw text if it's a string
elif isinstance(response, dict) and "choices" in response:
return response["choices"][0]["text"] # Extract the text from the structured response
else:
return "Unexpected response format."
# # Example usage
# markdown = "The sky appears blue due to the scattering of light by the atmosphere."
# question = "Hi"
# response = generate_response(markdown, question)
# print(f"Model Response: {response}")
import gradio as gr
from langchain_community.llms import Ollama
# Load the Ollama model
gen_model = Ollama(model="llama2")
# Define the manual responses
manual_responses = {
"hi": "Hello! How can I assist you today?",
"hello": "Hi there! What would you like to know?",
"who made you?": "I was created by OpenAI.",
"what is your purpose?": "I'm here to assist with educational queries!"
}
# Function to generate responses
def generate_response(user_input):
# Normalize user input for matching
normalized_input = user_input.lower().strip()
# Check for manual responses
if normalized_input in manual_responses:
return manual_responses[normalized_input]
# For other questions, generate a response using the model
prompt = f"Please provide a detailed answer to the following question:\n\nQuestion: {user_input}\n"
response = gen_model.invoke(prompt)
return response.strip()
# Create the Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(label="Ask a Question"),
outputs=gr.Textbox(label="Response"),
title="Q&A System",
description="Ask me anything and I will respond accordingly."
)
# Launch the Gradio app
if __name__ == "__main__":
iface.launch(share=True, inline = False) # Use share=True to make it public if needed