import streamlit as st import os import subprocess import sys def install(package): subprocess.check_call([sys.executable, "-m", "pip", "install", package]) install("langchain_community") install("sentence-transformers") from langchain.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from dotenv import load_dotenv load_dotenv() st.set_page_config(page_title="Educate Kids", page_icon=":robot:") st.header("Hey, Ask me something & I will give out similar things") embeddings=HuggingFaceEmbeddings() from langchain.document_loaders.csv_loader import CSVLoader loader = CSVLoader(file_path='mydata.csv', csv_args={ 'delimiter': ',', 'quotechar': '"', 'fieldnames': ['Words'] }) data = loader.load() print(data) db = FAISS.from_documents(data, embeddings) def get_text(): input_text = st.text_input("You: ", key= input) return input_text user_input=get_text() submit = st.button('Find similar Things') if submit: docs = db.similarity_search(user_input) st.subheader("Top Matches:") if docs: for item in docs[1:]: st.write(item.page_content) else: st.write("No similar things found")