Spaces:
Running
Running
File size: 11,485 Bytes
0d95f10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
#From https://github.com/kornia/kornia
import math
import torch
import torch.nn.functional as F
import comfy.model_management
def get_canny_nms_kernel(device=None, dtype=None):
"""Utility function that returns 3x3 kernels for the Canny Non-maximal suppression."""
return torch.tensor(
[
[[[0.0, 0.0, 0.0], [0.0, 1.0, -1.0], [0.0, 0.0, 0.0]]],
[[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]],
[[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0]]],
[[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]]],
[[[0.0, 0.0, 0.0], [-1.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
[[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
[[[0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
[[[0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
],
device=device,
dtype=dtype,
)
def get_hysteresis_kernel(device=None, dtype=None):
"""Utility function that returns the 3x3 kernels for the Canny hysteresis."""
return torch.tensor(
[
[[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]],
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]],
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]],
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]]],
[[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
[[[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
[[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
[[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
],
device=device,
dtype=dtype,
)
def gaussian_blur_2d(img, kernel_size, sigma):
ksize_half = (kernel_size - 1) * 0.5
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
pdf = torch.exp(-0.5 * (x / sigma).pow(2))
x_kernel = pdf / pdf.sum()
x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)
kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])
padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
img = torch.nn.functional.pad(img, padding, mode="reflect")
img = torch.nn.functional.conv2d(img, kernel2d, groups=img.shape[-3])
return img
def get_sobel_kernel2d(device=None, dtype=None):
kernel_x = torch.tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]], device=device, dtype=dtype)
kernel_y = kernel_x.transpose(0, 1)
return torch.stack([kernel_x, kernel_y])
def spatial_gradient(input, normalized: bool = True):
r"""Compute the first order image derivative in both x and y using a Sobel operator.
.. image:: _static/img/spatial_gradient.png
Args:
input: input image tensor with shape :math:`(B, C, H, W)`.
mode: derivatives modality, can be: `sobel` or `diff`.
order: the order of the derivatives.
normalized: whether the output is normalized.
Return:
the derivatives of the input feature map. with shape :math:`(B, C, 2, H, W)`.
.. note::
See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/
filtering_edges.html>`__.
Examples:
>>> input = torch.rand(1, 3, 4, 4)
>>> output = spatial_gradient(input) # 1x3x2x4x4
>>> output.shape
torch.Size([1, 3, 2, 4, 4])
"""
# KORNIA_CHECK_IS_TENSOR(input)
# KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W'])
# allocate kernel
kernel = get_sobel_kernel2d(device=input.device, dtype=input.dtype)
if normalized:
kernel = normalize_kernel2d(kernel)
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...]
# Pad with "replicate for spatial dims, but with zeros for channel
spatial_pad = [kernel.size(1) // 2, kernel.size(1) // 2, kernel.size(2) // 2, kernel.size(2) // 2]
out_channels: int = 2
padded_inp = torch.nn.functional.pad(input.reshape(b * c, 1, h, w), spatial_pad, 'replicate')
out = F.conv2d(padded_inp, tmp_kernel, groups=1, padding=0, stride=1)
return out.reshape(b, c, out_channels, h, w)
def rgb_to_grayscale(image, rgb_weights = None):
r"""Convert a RGB image to grayscale version of image.
.. image:: _static/img/rgb_to_grayscale.png
The image data is assumed to be in the range of (0, 1).
Args:
image: RGB image to be converted to grayscale with shape :math:`(*,3,H,W)`.
rgb_weights: Weights that will be applied on each channel (RGB).
The sum of the weights should add up to one.
Returns:
grayscale version of the image with shape :math:`(*,1,H,W)`.
.. note::
See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/
color_conversions.html>`__.
Example:
>>> input = torch.rand(2, 3, 4, 5)
>>> gray = rgb_to_grayscale(input) # 2x1x4x5
"""
if len(image.shape) < 3 or image.shape[-3] != 3:
raise ValueError(f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")
if rgb_weights is None:
# 8 bit images
if image.dtype == torch.uint8:
rgb_weights = torch.tensor([76, 150, 29], device=image.device, dtype=torch.uint8)
# floating point images
elif image.dtype in (torch.float16, torch.float32, torch.float64):
rgb_weights = torch.tensor([0.299, 0.587, 0.114], device=image.device, dtype=image.dtype)
else:
raise TypeError(f"Unknown data type: {image.dtype}")
else:
# is tensor that we make sure is in the same device/dtype
rgb_weights = rgb_weights.to(image)
# unpack the color image channels with RGB order
r: Tensor = image[..., 0:1, :, :]
g: Tensor = image[..., 1:2, :, :]
b: Tensor = image[..., 2:3, :, :]
w_r, w_g, w_b = rgb_weights.unbind()
return w_r * r + w_g * g + w_b * b
def canny(
input,
low_threshold = 0.1,
high_threshold = 0.2,
kernel_size = 5,
sigma = 1,
hysteresis = True,
eps = 1e-6,
):
r"""Find edges of the input image and filters them using the Canny algorithm.
.. image:: _static/img/canny.png
Args:
input: input image tensor with shape :math:`(B,C,H,W)`.
low_threshold: lower threshold for the hysteresis procedure.
high_threshold: upper threshold for the hysteresis procedure.
kernel_size: the size of the kernel for the gaussian blur.
sigma: the standard deviation of the kernel for the gaussian blur.
hysteresis: if True, applies the hysteresis edge tracking.
Otherwise, the edges are divided between weak (0.5) and strong (1) edges.
eps: regularization number to avoid NaN during backprop.
Returns:
- the canny edge magnitudes map, shape of :math:`(B,1,H,W)`.
- the canny edge detection filtered by thresholds and hysteresis, shape of :math:`(B,1,H,W)`.
.. note::
See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/
canny.html>`__.
Example:
>>> input = torch.rand(5, 3, 4, 4)
>>> magnitude, edges = canny(input) # 5x3x4x4
>>> magnitude.shape
torch.Size([5, 1, 4, 4])
>>> edges.shape
torch.Size([5, 1, 4, 4])
"""
# KORNIA_CHECK_IS_TENSOR(input)
# KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W'])
# KORNIA_CHECK(
# low_threshold <= high_threshold,
# "Invalid input thresholds. low_threshold should be smaller than the high_threshold. Got: "
# f"{low_threshold}>{high_threshold}",
# )
# KORNIA_CHECK(0 < low_threshold < 1, f'Invalid low threshold. Should be in range (0, 1). Got: {low_threshold}')
# KORNIA_CHECK(0 < high_threshold < 1, f'Invalid high threshold. Should be in range (0, 1). Got: {high_threshold}')
device = input.device
dtype = input.dtype
# To Grayscale
if input.shape[1] == 3:
input = rgb_to_grayscale(input)
# Gaussian filter
blurred: Tensor = gaussian_blur_2d(input, kernel_size, sigma)
# Compute the gradients
gradients: Tensor = spatial_gradient(blurred, normalized=False)
# Unpack the edges
gx: Tensor = gradients[:, :, 0]
gy: Tensor = gradients[:, :, 1]
# Compute gradient magnitude and angle
magnitude: Tensor = torch.sqrt(gx * gx + gy * gy + eps)
angle: Tensor = torch.atan2(gy, gx)
# Radians to Degrees
angle = 180.0 * angle / math.pi
# Round angle to the nearest 45 degree
angle = torch.round(angle / 45) * 45
# Non-maximal suppression
nms_kernels: Tensor = get_canny_nms_kernel(device, dtype)
nms_magnitude: Tensor = F.conv2d(magnitude, nms_kernels, padding=nms_kernels.shape[-1] // 2)
# Get the indices for both directions
positive_idx: Tensor = (angle / 45) % 8
positive_idx = positive_idx.long()
negative_idx: Tensor = ((angle / 45) + 4) % 8
negative_idx = negative_idx.long()
# Apply the non-maximum suppression to the different directions
channel_select_filtered_positive: Tensor = torch.gather(nms_magnitude, 1, positive_idx)
channel_select_filtered_negative: Tensor = torch.gather(nms_magnitude, 1, negative_idx)
channel_select_filtered: Tensor = torch.stack(
[channel_select_filtered_positive, channel_select_filtered_negative], 1
)
is_max: Tensor = channel_select_filtered.min(dim=1)[0] > 0.0
magnitude = magnitude * is_max
# Threshold
edges: Tensor = F.threshold(magnitude, low_threshold, 0.0)
low: Tensor = magnitude > low_threshold
high: Tensor = magnitude > high_threshold
edges = low * 0.5 + high * 0.5
edges = edges.to(dtype)
# Hysteresis
if hysteresis:
edges_old: Tensor = -torch.ones(edges.shape, device=edges.device, dtype=dtype)
hysteresis_kernels: Tensor = get_hysteresis_kernel(device, dtype)
while ((edges_old - edges).abs() != 0).any():
weak: Tensor = (edges == 0.5).float()
strong: Tensor = (edges == 1).float()
hysteresis_magnitude: Tensor = F.conv2d(
edges, hysteresis_kernels, padding=hysteresis_kernels.shape[-1] // 2
)
hysteresis_magnitude = (hysteresis_magnitude == 1).any(1, keepdim=True).to(dtype)
hysteresis_magnitude = hysteresis_magnitude * weak + strong
edges_old = edges.clone()
edges = hysteresis_magnitude + (hysteresis_magnitude == 0) * weak * 0.5
edges = hysteresis_magnitude
return magnitude, edges
class Canny:
@classmethod
def INPUT_TYPES(s):
return {"required": {"image": ("IMAGE",),
"low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}),
"high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01})
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_edge"
CATEGORY = "image/preprocessors"
def detect_edge(self, image, low_threshold, high_threshold):
output = canny(image.to(comfy.model_management.get_torch_device()).movedim(-1, 1), low_threshold, high_threshold)
img_out = output[1].to(comfy.model_management.intermediate_device()).repeat(1, 3, 1, 1).movedim(1, -1)
return (img_out,)
NODE_CLASS_MAPPINGS = {
"Canny": Canny,
}
|