WiseAI / app.py
vitaliy-sharandin's picture
Update app.py
ff39d68
raw
history blame
1.51 kB
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
'vitaliy-sharandin/wiseai',
load_in_8bit=True,
device_map = {"": 0}
)
tokenizer = AutoTokenizer.from_pretrained('vitaliy-sharandin/wiseai')
pipe = pipeline('text-generation', model=model,tokenizer=tokenizer)
def generate_text(instruction, input):
if not instruction.strip():
return str('The instruction field is required.')
if instruction.strip() and input.strip():
input_prompt = (f"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n"
f"{instruction}\n\n"
"### Input:\n"
f"{input}\n\n"
f"### Response: \n")
else :
input_prompt = (f"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n"
f"{instruction}\n\n"
f"### Response: \n")
result = pipe(input_prompt, max_length=200, top_p=0.9, temperature=0.9, num_return_sequences=1, return_full_text=False)[0]['generated_text']
return result[:str(result).find("###")]
iface = gr.Interface(fn=generate_text, inputs=[gr.Textbox(label="Instruction"),
gr.Textbox(label="Additional Input")],
outputs=gr.Textbox(label="Response"))
iface.launch(show_error=True, debug=True, share=True)