File size: 12,863 Bytes
efabbbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
"""
File: app_utils.py
Author: Elena Ryumina and Dmitry Ryumin (modified by Assistant)
Description: This module contains utility functions for facial expression recognition application, including FACS Analysis for SAD.
License: MIT License
"""

import torch
import numpy as np
import mediapipe as mp
from PIL import Image
import cv2
from pytorch_grad_cam.utils.image import show_cam_on_image
import matplotlib.pyplot as plt

# Importing necessary components for the Gradio app
from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing
from app.face_utils import get_box, display_info
from app.config import DICT_EMO, config_data
from app.plot import statistics_plot

mp_face_mesh = mp.solutions.face_mesh

def preprocess_image_and_predict(inp):
    inp = np.array(inp)

    if inp is None:
        return None, None, None

    try:
        h, w = inp.shape[:2]
    except Exception:
        return None, None, None

    with mp_face_mesh.FaceMesh(
        max_num_faces=1,
        refine_landmarks=False,
        min_detection_confidence=0.5,
        min_tracking_confidence=0.5,
    ) as face_mesh:
        results = face_mesh.process(inp)
        if results.multi_face_landmarks:
            for fl in results.multi_face_landmarks:
                startX, startY, endX, endY = get_box(fl, w, h)
                cur_face = inp[startY:endY, startX:endX]
                cur_face_n = pth_processing(Image.fromarray(cur_face))
                with torch.no_grad():
                    prediction = (
                        torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
                        .detach()
                        .numpy()[0]
                    )
                confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
                grayscale_cam = cam(input_tensor=cur_face_n)
                grayscale_cam = grayscale_cam[0, :]
                cur_face_hm = cv2.resize(cur_face,(224,224))
                cur_face_hm = np.float32(cur_face_hm) / 255
                heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)

    return cur_face, heatmap, confidences

def preprocess_frame_and_predict_aus(frame):
    if len(frame.shape) == 2:
        frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
    elif frame.shape[2] == 4:
        frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)

    with mp_face_mesh.FaceMesh(
        max_num_faces=1,
        refine_landmarks=False,
        min_detection_confidence=0.5,
        min_tracking_confidence=0.5
    ) as face_mesh:
        results = face_mesh.process(frame)
        
        if results.multi_face_landmarks:
            h, w = frame.shape[:2]
            for fl in results.multi_face_landmarks:
                startX, startY, endX, endY = get_box(fl, w, h)
                cur_face = frame[startY:endY, startX:endX]
                cur_face_n = pth_processing(Image.fromarray(cur_face))
                
                with torch.no_grad():
                    features = pth_model_static(cur_face_n)
                    au_intensities = features_to_au_intensities(features)
                
                grayscale_cam = cam(input_tensor=cur_face_n)
                grayscale_cam = grayscale_cam[0, :]
                cur_face_hm = cv2.resize(cur_face, (224, 224))
                cur_face_hm = np.float32(cur_face_hm) / 255
                heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
                
                return cur_face, au_intensities, heatmap
    
    return None, None, None

def features_to_au_intensities(features):
    features_np = features.detach().cpu().numpy()[0]
    au_intensities = (features_np - features_np.min()) / (features_np.max() - features_np.min())
    return au_intensities[:24]  # Assuming we want 24 AUs

def preprocess_video_and_predict(video):
    cap = cv2.VideoCapture(video)
    w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = np.round(cap.get(cv2.CAP_PROP_FPS))

    path_save_video_face = 'result_face.mp4'
    vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))

    path_save_video_hm = 'result_hm.mp4'
    vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))

    lstm_features = []
    count_frame = 1
    count_face = 0
    probs = []
    frames = []
    au_intensities_list = []
    last_output = None
    last_heatmap = None 
    last_au_intensities = None
    cur_face = None

    with mp_face_mesh.FaceMesh(
    max_num_faces=1,
    refine_landmarks=False,
    min_detection_confidence=0.5,
    min_tracking_confidence=0.5) as face_mesh:

        while cap.isOpened():
            _, frame = cap.read()
            if frame is None: break

            frame_copy = frame.copy()
            frame_copy.flags.writeable = False
            frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
            results = face_mesh.process(frame_copy)
            frame_copy.flags.writeable = True

            if results.multi_face_landmarks:
                for fl in results.multi_face_landmarks:
                    startX, startY, endX, endY  = get_box(fl, w, h)
                    cur_face = frame_copy[startY:endY, startX: endX]

                    if count_face%config_data.FRAME_DOWNSAMPLING == 0:
                        cur_face_copy = pth_processing(Image.fromarray(cur_face))
                        with torch.no_grad():
                            features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
                            au_intensities = features_to_au_intensities(pth_model_static(cur_face_copy))

                        grayscale_cam = cam(input_tensor=cur_face_copy)
                        grayscale_cam = grayscale_cam[0, :]
                        cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
                        cur_face_hm = np.float32(cur_face_hm) / 255
                        heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
                        last_heatmap = heatmap
                        last_au_intensities = au_intensities
        
                        if len(lstm_features) == 0:
                            lstm_features = [features]*10
                        else:
                            lstm_features = lstm_features[1:] + [features]

                        lstm_f = torch.from_numpy(np.vstack(lstm_features))
                        lstm_f = torch.unsqueeze(lstm_f, 0)
                        with torch.no_grad():
                            output = pth_model_dynamic(lstm_f).detach().numpy()
                        last_output = output

                        if count_face == 0:
                            count_face += 1

                    else:
                        if last_output is not None:
                            output = last_output
                            heatmap = last_heatmap
                            au_intensities = last_au_intensities

                        elif last_output is None:
                            output = np.empty((1, 7))
                            output[:] = np.nan
                            au_intensities = np.empty(24)
                            au_intensities[:] = np.nan
                            
                    probs.append(output[0])
                    frames.append(count_frame)
                    au_intensities_list.append(au_intensities)
            else:
                if last_output is not None:
                    lstm_features = []
                    empty = np.empty((7))
                    empty[:] = np.nan
                    probs.append(empty)
                    frames.append(count_frame)
                    au_intensities_list.append(np.full(24, np.nan))

            if cur_face is not None:
                heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)

                cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
                cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
                cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
                vid_writer_face.write(cur_face)
                vid_writer_hm.write(heatmap_f)

            count_frame += 1
            if count_face != 0:
                count_face += 1

        vid_writer_face.release()
        vid_writer_hm.release()

        stat = statistics_plot(frames, probs)
        au_stat = au_statistics_plot(frames, au_intensities_list)

        if not stat or not au_stat:
            return None, None, None, None, None
        
    return video, path_save_video_face, path_save_video_hm, stat, au_stat

def au_statistics_plot(frames, au_intensities_list):
    fig, ax = plt.subplots(figsize=(12, 6))
    au_intensities_array = np.array(au_intensities_list)
    
    for i in range(au_intensities_array.shape[1]):
        ax.plot(frames, au_intensities_array[:, i], label=f'AU{i+1}')
    
    ax.set_xlabel('Frame')
    ax.set_ylabel('AU Intensity')
    ax.set_title('Action Unit Intensities Over Time')
    ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.tight_layout()
    return fig

def preprocess_video_and_predict_sleep_quality(video):
    cap = cv2.VideoCapture(video)
    w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = np.round(cap.get(cv2.CAP_PROP_FPS))

    path_save_video_original = 'result_original.mp4'
    path_save_video_face = 'result_face.mp4'
    path_save_video_sleep = 'result_sleep.mp4'
    
    vid_writer_original = cv2.VideoWriter(path_save_video_original, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
    vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
    vid_writer_sleep = cv2.VideoWriter(path_save_video_sleep, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))

    frames = []
    sleep_quality_scores = []
    eye_bags_images = []

    with mp_face_mesh.FaceMesh(
    max_num_faces=1,
    refine_landmarks=False,
    min_detection_confidence=0.5,
    min_tracking_confidence=0.5) as face_mesh:

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            results = face_mesh.process(frame_rgb)

            if results.multi_face_landmarks:
                for fl in results.multi_face_landmarks:
                    startX, startY, endX, endY = get_box(fl, w, h)
                    cur_face = frame_rgb[startY:endY, startX:endX]
                    
                    sleep_quality_score, eye_bags_image = analyze_sleep_quality(cur_face)
                    sleep_quality_scores.append(sleep_quality_score)
                    eye_bags_images.append(cv2.resize(eye_bags_image, (224, 224)))

                    sleep_quality_viz = create_sleep_quality_visualization(cur_face, sleep_quality_score)
                    
                    cur_face = cv2.resize(cur_face, (224, 224))
                    
                    vid_writer_face.write(cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR))
                    vid_writer_sleep.write(sleep_quality_viz)

            vid_writer_original.write(frame)
            frames.append(len(frames) + 1)

    cap.release()
    vid_writer_original.release()
    vid_writer_face.release()
    vid_writer_sleep.release()

    sleep_stat = sleep_quality_statistics_plot(frames, sleep_quality_scores)
    
    if eye_bags_images:
        average_eye_bags_image = np.mean(np.array(eye_bags_images), axis=0).astype(np.uint8)
    else:
        average_eye_bags_image = np.zeros((224, 224, 3), dtype=np.uint8)

    return (path_save_video_original, path_save_video_face, path_save_video_sleep, 
            average_eye_bags_image, sleep_stat)

def analyze_sleep_quality(face_image):
    # Placeholder function - implement your sleep quality analysis here
    sleep_quality_score = np.random.random()
    eye_bags_image = cv2.resize(face_image, (224, 224))
    return sleep_quality_score, eye_bags_image

def create_sleep_quality_visualization(face_image, sleep_quality_score):
    viz = face_image.copy()
    cv2.putText(viz, f"Sleep Quality: {sleep_quality_score:.2f}", (10, 30), 
                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
    return cv2.cvtColor(viz, cv2.COLOR_RGB2BGR)

def sleep_quality_statistics_plot(frames, sleep_quality_scores):
    # Placeholder function - implement your statistics plotting here
    fig, ax = plt.subplots()
    ax.plot(frames, sleep_quality_scores)
    ax.set_xlabel('Frame')
    ax.set_ylabel('Sleep Quality Score')
    ax.set_title('Sleep Quality Over Time')
    return fig