Spaces:
No application file
No application file
Update app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,74 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
input_features =
|
24 |
-
|
25 |
-
transcription
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
audio_clip
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
if audio_path is not None:
|
77 |
-
st.write("Transcribing audio...")
|
78 |
-
transcription = transcribe_audio(audio_path)
|
79 |
-
st.write("Transcription:", transcription)
|
80 |
-
|
81 |
-
st.write("Translating and summarizing...")
|
82 |
-
summary = translate_and_summarize(transcription)
|
83 |
-
st.write("Translated Summary:", summary)
|
84 |
-
else:
|
85 |
-
st.write("No audio track found in the video file.")
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import soundfile as sf
|
4 |
+
import librosa
|
5 |
+
from moviepy.editor import VideoFileClip
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Load Whisper base model and processor
|
9 |
+
whisper_model_name = "openai/whisper-base"
|
10 |
+
whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name)
|
11 |
+
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
|
12 |
+
|
13 |
+
# Load RAG sequence model and tokenizer
|
14 |
+
rag_model_name = "facebook/rag-sequence-nq"
|
15 |
+
rag_tokenizer = RagTokenizer.from_pretrained(rag_model_name)
|
16 |
+
rag_retriever = RagRetriever.from_pretrained(rag_model_name, index_name="exact", use_dummy_dataset=True)
|
17 |
+
rag_model = RagSequenceForGeneration.from_pretrained(rag_model_name, retriever=rag_retriever)
|
18 |
+
|
19 |
+
def transcribe_audio(audio_path, language="ru"):
|
20 |
+
speech, rate = librosa.load(audio_path, sr=16000)
|
21 |
+
inputs = whisper_processor(speech, return_tensors="pt", sampling_rate=16000)
|
22 |
+
input_features = whisper_processor.feature_extractor(speech, return_tensors="pt", sampling_rate=16000).input_features
|
23 |
+
predicted_ids = whisper_model.generate(input_features, forced_decoder_ids=whisper_processor.get_decoder_prompt_ids(language=language, task="translate"))
|
24 |
+
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
25 |
+
return transcription
|
26 |
+
|
27 |
+
def translate_and_summarize(text):
|
28 |
+
inputs = rag_tokenizer(text, return_tensors="pt")
|
29 |
+
input_ids = inputs["input_ids"]
|
30 |
+
attention_mask = inputs["attention_mask"]
|
31 |
+
outputs = rag_model.generate(input_ids=input_ids, attention_mask=attention_mask)
|
32 |
+
return rag_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
33 |
+
|
34 |
+
def extract_audio_from_video(video_path, output_audio_path):
|
35 |
+
video_clip = VideoFileClip(video_path)
|
36 |
+
audio_clip = video_clip.audio
|
37 |
+
if audio_clip is not None:
|
38 |
+
audio_clip.write_audiofile(output_audio_path)
|
39 |
+
return output_audio_path
|
40 |
+
else:
|
41 |
+
return None
|
42 |
+
|
43 |
+
def transcribe_audio_interface(audio_file):
|
44 |
+
audio_path = os.path.join("/tmp", audio_file.name)
|
45 |
+
with open(audio_path, "wb") as f:
|
46 |
+
f.write(audio_file.getvalue())
|
47 |
+
transcription = transcribe_audio(audio_path)
|
48 |
+
return transcription
|
49 |
+
|
50 |
+
def summarize_text_interface(text):
|
51 |
+
summary = translate_and_summarize(text)
|
52 |
+
return summary
|
53 |
+
|
54 |
+
def summarize_video_interface(video_file):
|
55 |
+
video_path = os.path.join("/tmp", video_file.name)
|
56 |
+
with open(video_path, "wb") as f:
|
57 |
+
f.write(video_file.getvalue())
|
58 |
+
audio_path = extract_audio_from_video(video_path, "/tmp/extracted_audio.wav")
|
59 |
+
if audio_path is not None:
|
60 |
+
transcription = transcribe_audio(audio_path)
|
61 |
+
summary = translate_and_summarize(transcription)
|
62 |
+
return summary
|
63 |
+
else:
|
64 |
+
return "No audio track found in the video file."
|
65 |
+
|
66 |
+
# Create interfaces
|
67 |
+
audio_transcription_interface = gr.Interface(transcribe_audio_interface, inputs="audio", outputs="text", title="Audio Transcription")
|
68 |
+
text_summarization_interface = gr.Interface(summarize_text_interface, inputs="text", outputs="text", title="Text Summarization")
|
69 |
+
video_summarization_interface = gr.Interface(summarize_video_interface, inputs="video", outputs="text", title="Video Summarization")
|
70 |
+
|
71 |
+
# Launch the interfaces
|
72 |
+
audio_transcription_interface.launch()
|
73 |
+
text_summarization_interface.launch()
|
74 |
+
video_summarization_interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|