|
import streamlit as st
|
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration, RagTokenizer, RagRetriever, RagSequenceForGeneration
|
|
import torch
|
|
import soundfile as sf
|
|
import librosa
|
|
from moviepy.editor import VideoFileClip
|
|
import os
|
|
|
|
|
|
whisper_model_name = "openai/whisper-base"
|
|
whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name)
|
|
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
|
|
|
|
|
|
rag_model_name = "facebook/rag-sequence-nq"
|
|
rag_tokenizer = RagTokenizer.from_pretrained(rag_model_name)
|
|
rag_retriever = RagRetriever.from_pretrained(rag_model_name, index_name="exact", use_dummy_dataset=True, trust_remote_code=True)
|
|
rag_model = RagSequenceForGeneration.from_pretrained(rag_model_name, retriever=rag_retriever)
|
|
|
|
def transcribe_audio(audio_path, language="ru"):
|
|
speech, rate = librosa.load(audio_path, sr=16000)
|
|
inputs = whisper_processor(speech, return_tensors="pt", sampling_rate=16000)
|
|
input_features = whisper_processor.feature_extractor(speech, return_tensors="pt", sampling_rate=16000).input_features
|
|
predicted_ids = whisper_model.generate(input_features, forced_decoder_ids=whisper_processor.get_decoder_prompt_ids(language=language, task="translate"))
|
|
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
|
return transcription
|
|
|
|
def translate_and_summarize(text):
|
|
inputs = rag_tokenizer(text, return_tensors="pt")
|
|
input_ids = inputs["input_ids"]
|
|
attention_mask = inputs["attention_mask"]
|
|
outputs = rag_model.generate(input_ids=input_ids, attention_mask=attention_mask)
|
|
return rag_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
|
|
def extract_audio_from_video(video_path, output_audio_path):
|
|
video_clip = VideoFileClip(video_path)
|
|
audio_clip = video_clip.audio
|
|
if audio_clip is not None:
|
|
audio_clip.write_audiofile(output_audio_path)
|
|
return output_audio_path
|
|
else:
|
|
return None
|
|
|
|
st.title("Audio and Video Transcription & Summarization")
|
|
|
|
|
|
st.header("Upload an Audio File")
|
|
audio_file = st.file_uploader("Choose an audio file...", type=["wav", "mp3", "m4a"])
|
|
|
|
if audio_file is not None:
|
|
audio_path = os.path.join("/tmp", audio_file.name)
|
|
with open(audio_path, "wb") as f:
|
|
f.write(audio_file.getbuffer())
|
|
|
|
st.audio(audio_file)
|
|
st.write("Transcribing audio...")
|
|
transcription = transcribe_audio(audio_path)
|
|
st.write("Transcription:", transcription)
|
|
|
|
st.write("Translating and summarizing...")
|
|
summary = translate_and_summarize(transcription)
|
|
st.write("Translated Summary:", summary)
|
|
|
|
st.header("Upload a Video File")
|
|
video_file = st.file_uploader("Choose a video file...", type=["mp4", "mkv", "avi", "mov"])
|
|
|
|
if video_file is not None:
|
|
video_path = os.path.join("/tmp", video_file.name)
|
|
with open(video_path, "wb") as f:
|
|
f.write(video_file.getbuffer())
|
|
|
|
st.video(video_file)
|
|
st.write("Extracting audio from video...")
|
|
audio_path = extract_audio_from_video(video_path, "/tmp/extracted_audio.wav")
|
|
|
|
if audio_path is not None:
|
|
st.write("Transcribing audio...")
|
|
transcription = transcribe_audio(audio_path)
|
|
st.write("Transcription:", transcription)
|
|
|
|
st.write("Translating and summarizing...")
|
|
summary = translate_and_summarize(transcription)
|
|
st.write("Translated Summary:", summary)
|
|
else:
|
|
st.write("No audio track found in the video file.") |