Spaces:
Runtime error
Runtime error
File size: 10,168 Bytes
563e3ef 81c0cb7 563e3ef 685c1fb 563e3ef 81c0cb7 563e3ef 6392199 563e3ef 6392199 563e3ef f976276 563e3ef 6392199 563e3ef 81c0cb7 563e3ef 6392199 563e3ef 766fe99 563e3ef 81c0cb7 6392199 f976276 6392199 563e3ef 81c0cb7 563e3ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
from html import escape
import requests
from io import BytesIO
import base64
from multiprocessing.dummy import Pool
from PIL import Image, ImageDraw
import streamlit as st
import pandas as pd, numpy as np
import torch
from transformers import CLIPProcessor, CLIPModel
from transformers import OwlViTProcessor, OwlViTForObjectDetection
from transformers.image_utils import ImageFeatureExtractionMixin
import tokenizers
DEBUG = False
if DEBUG:
MODEL = "vit-base-patch32"
else:
MODEL = "vit-large-patch14-336"
CLIP_MODEL = f"openai/clip-{MODEL}"
OWL_MODEL = f"google/owlvit-base-patch32"
if not DEBUG and torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
HEIGHT = 200
N_RESULTS = 6
color = st.get_option("theme.primaryColor")
if color is None:
color = (255, 196, 35)
else:
color = tuple(int(color.lstrip("#")[i : i + 2], 16) for i in (0, 2, 4))
@st.cache(allow_output_mutation=True)
def load():
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
clip_model = CLIPModel.from_pretrained(CLIP_MODEL)
clip_model.to(device)
clip_model.eval()
clip_processor = CLIPProcessor.from_pretrained(CLIP_MODEL)
owl_model = OwlViTForObjectDetection.from_pretrained(OWL_MODEL)
owl_model.to(device)
owl_model.eval()
owl_processor = OwlViTProcessor.from_pretrained(OWL_MODEL)
embeddings = {
0: np.load(f"embeddings-{MODEL}.npy"),
1: np.load(f"embeddings2-{MODEL}.npy"),
}
for k in [0, 1]:
embeddings[k] = embeddings[k] / np.linalg.norm(
embeddings[k], axis=1, keepdims=True
)
return clip_model, clip_processor, owl_model, owl_processor, df, embeddings
clip_model, clip_processor, owl_model, owl_processor, df, embeddings = load()
mixin = ImageFeatureExtractionMixin()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
def compute_text_embeddings(list_of_strings):
inputs = clip_processor(text=list_of_strings, return_tensors="pt", padding=True).to(
device
)
with torch.no_grad():
result = clip_model.get_text_features(**inputs).detach().cpu().numpy()
return result / np.linalg.norm(result, axis=1, keepdims=True)
def image_search(query, corpus, n_results=N_RESULTS):
query_embedding = compute_text_embeddings([query])
corpus_id = 0 if corpus == "Unsplash" else 1
dot_product = (embeddings[corpus_id] @ query_embedding.T)[:, 0]
results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
return [
(
df[corpus_id].iloc[i].path,
df[corpus_id].iloc[i].tooltip + source[corpus_id],
df[corpus_id].iloc[i].link,
)
for i in results
]
def make_square(img, fill_color=(255, 255, 255)):
x, y = img.size
size = max(x, y)
new_img = Image.new("RGB", (size, size), fill_color)
new_img.paste(img, (int((size - x) / 2), int((size - y) / 2)))
return new_img, x, y
@st.cache(allow_output_mutation=True, show_spinner=False)
def get_images(paths):
def process_image(path):
return make_square(Image.open(BytesIO(requests.get(path).content)))
processed = Pool(N_RESULTS).map(process_image, paths)
imgs, xs, ys = [], [], []
for img, x, y in processed:
imgs.append(img)
xs.append(x)
ys.append(y)
return imgs, xs, ys
@st.cache(
hash_funcs={
tokenizers.Tokenizer: lambda x: None,
tokenizers.AddedToken: lambda x: None,
torch.nn.parameter.Parameter: lambda x: None,
},
allow_output_mutation=True,
show_spinner=False,
)
def apply_owl_model(owl_queries, images):
inputs = owl_processor(text=owl_queries, images=images, return_tensors="pt").to(
device
)
with torch.no_grad():
results = owl_model(**inputs)
target_sizes = torch.Tensor([img.size[::-1] for img in images]).to(device)
return owl_processor.post_process(outputs=results, target_sizes=target_sizes)
def keep_best_boxes(boxes, scores, score_threshold=0.1, max_iou=0.8):
candidates = []
for box, score in zip(boxes, scores):
box = [round(i, 0) for i in box.tolist()]
if score >= score_threshold:
candidates.append((box, float(score)))
to_ignore = set()
for i in range(len(candidates) - 1):
if i in to_ignore:
continue
for j in range(i + 1, len(candidates)):
if j in to_ignore:
continue
xmin1, ymin1, xmax1, ymax1 = candidates[i][0]
xmin2, ymin2, xmax2, ymax2 = candidates[j][0]
if xmax1 < xmin2 or xmax2 < xmin1 or ymax1 < ymin2 or ymax2 < ymin1:
continue
else:
xmin_inter, xmax_inter = sorted([xmin1, xmax1, xmin2, xmax2])[1:3]
ymin_inter, ymax_inter = sorted([ymin1, ymax1, ymin2, ymax2])[1:3]
area_inter = (xmax_inter - xmin_inter) * (ymax_inter - ymin_inter)
area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
area2 = (xmax2 - xmin2) * (ymax2 - ymin2)
iou = area_inter / (area1 + area2 - area_inter)
if iou > max_iou:
if candidates[i][1] > candidates[j][1]:
to_ignore.add(j)
else:
to_ignore.add(i)
break
else:
if area_inter / area1 > 0.9:
if candidates[i][1] < 1.1 * candidates[j][1]:
to_ignore.add(i)
if area_inter / area2 > 0.9:
if 1.1 * candidates[i][1] > candidates[j][1]:
to_ignore.add(j)
return [candidates[i][0] for i in range(len(candidates)) if i not in to_ignore]
def convert_pil_to_base64(image):
img_buffer = BytesIO()
image.save(img_buffer, format="JPEG")
byte_data = img_buffer.getvalue()
base64_str = base64.b64encode(byte_data)
return base64_str
def draw_reshape_encode(img, boxes, x, y):
image = img.copy()
draw = ImageDraw.Draw(image)
new_x, new_y = int(x * HEIGHT / y), HEIGHT
for box in boxes:
draw.rectangle(
(tuple(box[:2]), tuple(box[2:])), outline=color, width=2 * int(y / HEIGHT)
)
if x > y:
image = image.crop((0, (x - y) / 2, x, x - (x - y) / 2))
else:
image = image.crop(((y - x) / 2, 0, y - (y - x) / 2, y))
return convert_pil_to_base64(image.resize((new_x, new_y)))
def get_html(url_list, encoded_images):
html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
for i in range(len(url_list)):
title, encoded = url_list[i][1], encoded_images[i]
html = (
html
+ f"<img title='{escape(title)}' style='height: {HEIGHT}px; margin: 5px' src='data:image/jpeg;base64,{encoded.decode()}'>"
)
html += "</div>"
return html
description = """
# Search and Detect
This demo illustrates how to both retrieve images containing certain objects and locate these objects with a simple text query.
**Enter your query and hit enter**
**Tip 1**: if your query includes "/", the left and right parts will be used to respectively retrieve images and locate objects. For example, if you want to retrieve pictures with several cats but locate individual cats, you can type "cats / cat".
**Tip 2**: change the score threshold to adjust the sensitivity of the object detection step.
*Built with OpenAI's [CLIP](https://openai.com/blog/clip/) model and Google's [OWL-ViT](https://arxiv.org/abs/2205.06230) model, 🤗 Hugging Face's [transformers library](https://huggingface.co/transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*
"""
div_style = {
"display": "flex",
"justify-content": "center",
"flex-wrap": "wrap",
}
def main():
st.markdown(
"""
<style>
.block-container{
max-width: 1200px;
}
div.row-widget > div{
flex-direction:row;
display: flex;
justify-content: center;
}
div.row-widget.stRadio > div > label{
margin-left: 5px;
margin-right: 5px;
}
.row-widget {
margin-top: -25px;
}
section>div:first-child {
padding-top: 30px;
}
div.appview-container > section:first-child{
max-width: 320px;
}
#MainMenu {
visibility: hidden;
}
</style>""",
unsafe_allow_html=True,
)
st.sidebar.markdown(description)
_, c, _ = st.columns((1, 3, 1))
query = c.text_input("", value="koala")
corpus = c.radio("", ["Unsplash", "Movies"])
score_threshold = c.slider(
"Score threshold", min_value=0.01, max_value=0.2, value=0.03, step=0.01
)
if len(query) > 0:
if "/" in query:
queries = query.split("/")
clip_query, owl_query = ("/").join(queries[:-1]).strip(), queries[
-1
].strip()
else:
clip_query, owl_query = query, query
retrieved = image_search(clip_query, corpus)
imgs, xs, ys = get_images([x[0] for x in retrieved])
results = apply_owl_model([[owl_query]] * len(imgs), imgs)
encoded_images = []
for image_idx in range(len(imgs)):
img0, x, y = imgs[image_idx], xs[image_idx], ys[image_idx]
boxes = keep_best_boxes(
results[image_idx]["boxes"],
results[image_idx]["scores"],
score_threshold=score_threshold,
)
encoded_images.append(draw_reshape_encode(img0, boxes, x, y))
st.markdown(get_html(retrieved, encoded_images), unsafe_allow_html=True)
if __name__ == "__main__":
main()
|