File size: 10,168 Bytes
563e3ef
 
 
 
 
 
 
 
 
 
 
 
 
 
81c0cb7
563e3ef
 
 
 
 
685c1fb
563e3ef
 
 
 
 
 
 
 
 
 
 
81c0cb7
563e3ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6392199
 
 
 
 
563e3ef
 
 
 
 
 
 
6392199
563e3ef
 
 
f976276
563e3ef
6392199
563e3ef
81c0cb7
563e3ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6392199
563e3ef
 
 
 
 
 
 
 
 
 
 
 
 
 
766fe99
563e3ef
 
 
 
 
 
 
 
 
 
 
81c0cb7
6392199
 
f976276
6392199
563e3ef
 
 
 
81c0cb7
 
 
563e3ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from html import escape
import requests
from io import BytesIO
import base64
from multiprocessing.dummy import Pool
from PIL import Image, ImageDraw
import streamlit as st
import pandas as pd, numpy as np
import torch
from transformers import CLIPProcessor, CLIPModel
from transformers import OwlViTProcessor, OwlViTForObjectDetection
from transformers.image_utils import ImageFeatureExtractionMixin
import tokenizers

DEBUG = False
if DEBUG:
    MODEL = "vit-base-patch32"
else:
    MODEL = "vit-large-patch14-336"
CLIP_MODEL = f"openai/clip-{MODEL}"
OWL_MODEL = f"google/owlvit-base-patch32"

if not DEBUG and torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

HEIGHT = 200
N_RESULTS = 6

color = st.get_option("theme.primaryColor")
if color is None:
    color = (255, 196, 35)
else:
    color = tuple(int(color.lstrip("#")[i : i + 2], 16) for i in (0, 2, 4))


@st.cache(allow_output_mutation=True)
def load():
    df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
    clip_model = CLIPModel.from_pretrained(CLIP_MODEL)
    clip_model.to(device)
    clip_model.eval()
    clip_processor = CLIPProcessor.from_pretrained(CLIP_MODEL)
    owl_model = OwlViTForObjectDetection.from_pretrained(OWL_MODEL)
    owl_model.to(device)
    owl_model.eval()
    owl_processor = OwlViTProcessor.from_pretrained(OWL_MODEL)
    embeddings = {
        0: np.load(f"embeddings-{MODEL}.npy"),
        1: np.load(f"embeddings2-{MODEL}.npy"),
    }
    for k in [0, 1]:
        embeddings[k] = embeddings[k] / np.linalg.norm(
            embeddings[k], axis=1, keepdims=True
        )
    return clip_model, clip_processor, owl_model, owl_processor, df, embeddings


clip_model, clip_processor, owl_model, owl_processor, df, embeddings = load()
mixin = ImageFeatureExtractionMixin()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}


def compute_text_embeddings(list_of_strings):
    inputs = clip_processor(text=list_of_strings, return_tensors="pt", padding=True).to(
        device
    )
    with torch.no_grad():
        result = clip_model.get_text_features(**inputs).detach().cpu().numpy()
    return result / np.linalg.norm(result, axis=1, keepdims=True)


def image_search(query, corpus, n_results=N_RESULTS):
    query_embedding = compute_text_embeddings([query])
    corpus_id = 0 if corpus == "Unsplash" else 1
    dot_product = (embeddings[corpus_id] @ query_embedding.T)[:, 0]
    results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
    return [
        (
            df[corpus_id].iloc[i].path,
            df[corpus_id].iloc[i].tooltip + source[corpus_id],
            df[corpus_id].iloc[i].link,
        )
        for i in results
    ]


def make_square(img, fill_color=(255, 255, 255)):
    x, y = img.size
    size = max(x, y)
    new_img = Image.new("RGB", (size, size), fill_color)
    new_img.paste(img, (int((size - x) / 2), int((size - y) / 2)))
    return new_img, x, y


@st.cache(allow_output_mutation=True, show_spinner=False)
def get_images(paths):
    def process_image(path):
        return make_square(Image.open(BytesIO(requests.get(path).content)))

    processed = Pool(N_RESULTS).map(process_image, paths)
    imgs, xs, ys = [], [], []
    for img, x, y in processed:
        imgs.append(img)
        xs.append(x)
        ys.append(y)
    return imgs, xs, ys


@st.cache(
    hash_funcs={
        tokenizers.Tokenizer: lambda x: None,
        tokenizers.AddedToken: lambda x: None,
        torch.nn.parameter.Parameter: lambda x: None,
    },
    allow_output_mutation=True,
    show_spinner=False,
)
def apply_owl_model(owl_queries, images):
    inputs = owl_processor(text=owl_queries, images=images, return_tensors="pt").to(
        device
    )
    with torch.no_grad():
        results = owl_model(**inputs)
    target_sizes = torch.Tensor([img.size[::-1] for img in images]).to(device)
    return owl_processor.post_process(outputs=results, target_sizes=target_sizes)


def keep_best_boxes(boxes, scores, score_threshold=0.1, max_iou=0.8):
    candidates = []
    for box, score in zip(boxes, scores):
        box = [round(i, 0) for i in box.tolist()]
        if score >= score_threshold:
            candidates.append((box, float(score)))

    to_ignore = set()
    for i in range(len(candidates) - 1):
        if i in to_ignore:
            continue
        for j in range(i + 1, len(candidates)):
            if j in to_ignore:
                continue
            xmin1, ymin1, xmax1, ymax1 = candidates[i][0]
            xmin2, ymin2, xmax2, ymax2 = candidates[j][0]
            if xmax1 < xmin2 or xmax2 < xmin1 or ymax1 < ymin2 or ymax2 < ymin1:
                continue
            else:
                xmin_inter, xmax_inter = sorted([xmin1, xmax1, xmin2, xmax2])[1:3]
                ymin_inter, ymax_inter = sorted([ymin1, ymax1, ymin2, ymax2])[1:3]
                area_inter = (xmax_inter - xmin_inter) * (ymax_inter - ymin_inter)
                area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
                area2 = (xmax2 - xmin2) * (ymax2 - ymin2)
                iou = area_inter / (area1 + area2 - area_inter)
                if iou > max_iou:
                    if candidates[i][1] > candidates[j][1]:
                        to_ignore.add(j)
                    else:
                        to_ignore.add(i)
                        break
                else:
                    if area_inter / area1 > 0.9:
                        if candidates[i][1] < 1.1 * candidates[j][1]:
                            to_ignore.add(i)
                    if area_inter / area2 > 0.9:
                        if 1.1 * candidates[i][1] > candidates[j][1]:
                            to_ignore.add(j)
    return [candidates[i][0] for i in range(len(candidates)) if i not in to_ignore]


def convert_pil_to_base64(image):
    img_buffer = BytesIO()
    image.save(img_buffer, format="JPEG")
    byte_data = img_buffer.getvalue()
    base64_str = base64.b64encode(byte_data)
    return base64_str


def draw_reshape_encode(img, boxes, x, y):
    image = img.copy()
    draw = ImageDraw.Draw(image)
    new_x, new_y = int(x * HEIGHT / y), HEIGHT
    for box in boxes:
        draw.rectangle(
            (tuple(box[:2]), tuple(box[2:])), outline=color, width=2 * int(y / HEIGHT)
        )
    if x > y:
        image = image.crop((0, (x - y) / 2, x, x - (x - y) / 2))
    else:
        image = image.crop(((y - x) / 2, 0, y - (y - x) / 2, y))
    return convert_pil_to_base64(image.resize((new_x, new_y)))


def get_html(url_list, encoded_images):
    html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
    for i in range(len(url_list)):
        title, encoded = url_list[i][1], encoded_images[i]
        html = (
            html
            + f"<img title='{escape(title)}' style='height: {HEIGHT}px; margin: 5px' src='data:image/jpeg;base64,{encoded.decode()}'>"
        )
    html += "</div>"
    return html


description = """
# Search and Detect

This demo illustrates how to both retrieve images containing certain objects and locate these objects with a simple text query.

**Enter your query and hit enter**

**Tip 1**: if your query includes "/", the left and right parts will be used to respectively retrieve images and locate objects. For example, if you want to retrieve pictures with several cats but locate individual cats, you can type "cats / cat".

**Tip 2**: change the score threshold to adjust the sensitivity of the object detection step.

*Built with OpenAI's [CLIP](https://openai.com/blog/clip/) model and Google's [OWL-ViT](https://arxiv.org/abs/2205.06230) model, 🤗 Hugging Face's [transformers library](https://huggingface.co/transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*

"""

div_style = {
    "display": "flex",
    "justify-content": "center",
    "flex-wrap": "wrap",
}


def main():
    st.markdown(
        """
              <style>
              .block-container{
                max-width: 1200px;
              }
              div.row-widget > div{
                flex-direction:row;
                display: flex;
                justify-content: center;
              }
              div.row-widget.stRadio > div > label{
                margin-left: 5px;
                margin-right: 5px;
              }
              .row-widget {
                margin-top: -25px;
              }
              section>div:first-child {
                padding-top: 30px;
              }
              div.appview-container > section:first-child{
                max-width: 320px;
              }
              #MainMenu {
                visibility: hidden;
              }
              </style>""",
        unsafe_allow_html=True,
    )
    st.sidebar.markdown(description)

    _, c, _ = st.columns((1, 3, 1))
    query = c.text_input("", value="koala")
    corpus = c.radio("", ["Unsplash", "Movies"])
    score_threshold = c.slider(
        "Score threshold", min_value=0.01, max_value=0.2, value=0.03, step=0.01
    )

    if len(query) > 0:
        if "/" in query:
            queries = query.split("/")
            clip_query, owl_query = ("/").join(queries[:-1]).strip(), queries[
                -1
            ].strip()
        else:
            clip_query, owl_query = query, query
        retrieved = image_search(clip_query, corpus)
        imgs, xs, ys = get_images([x[0] for x in retrieved])
        results = apply_owl_model([[owl_query]] * len(imgs), imgs)
        encoded_images = []
        for image_idx in range(len(imgs)):
            img0, x, y = imgs[image_idx], xs[image_idx], ys[image_idx]
            boxes = keep_best_boxes(
                results[image_idx]["boxes"],
                results[image_idx]["scores"],
                score_threshold=score_threshold,
            )
            encoded_images.append(draw_reshape_encode(img0, boxes, x, y))
        st.markdown(get_html(retrieved, encoded_images), unsafe_allow_html=True)


if __name__ == "__main__":
    main()